

Standard Laminate SiP Module

Series/Type: R078 (WL1807) / D7022 Ordering code: B30921D7022Y918

Date: 2014-12-9

Version: 1.3

[©] EPCOS AG 2014. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

1 Overview

This document details the specifications and features of R078 (WL1807) / D7022 SiP module. The R078 (WL1807) / D7022 SiP module is based on Texas Instruments WL1807 IC, specifically WL180x Data Sheet version 1.2, such that the SiP module specification is subject to any subsequent changes in applicable Texas Instruments documentation and software.

The R078 (WL1807) / D7022 contains the WL1807 SoC, 2.4GHz and 5 GHz SPDT switches, 2.4GHz and 5GHz band pass filters / diplexer and necessary passive components for WLAN in a highly integrated solution.

1.1 Features

- WLAN on a single chip provides universal connectivity in small PCB footprint.
- Provides efficient direct connection to battery by employing several integrated switched mode power supplies (DC2DC).
- Based on 45nm CMOS technology using proven core technology.
- Seamless integration with TI OMAP[™] Application Processors.
- WLAN core software and hardware compatible with prior WL127x and WL128x offerings, for smooth migration to Device.
- SDIO for WLAN.
- Downloadable patches and firmware enables new features to be added.
- Temperature detection and compensation mechanism ensures minimal variation in the RF performance over the entire temperature range.

1.2 Applications

Mobile phone and mobile computer device applications.

1.3 General Description

The R078 (WL1807) / D7022 is a highly integrated WLAN device that forms a complete standalone communication system. The WL1807 is a highly integrated single-chip CMOS (45-nm process) incorporates the core functionality of the WL1271/3 and WL1281/3 devices.

The device is the 8th-generation WLAN device from Texas Instruments. As such, the WL1807 is based upon proven core technology and complements the TI integrated devices for connectivity portfolio.

R078 (WL1807) / D7022 is ideal for use in mobile phone and mobile computer device applications due to its low current, small area and cellular phone coexistence-friendly features.

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

1.4 Terms and abbreviations

BPF - Band-Pass Filter

FE - Front-End (refers to FE IC and BPF)

GND - Ground

IC - Integrated Circuit

I/O - Input/Output interfaces

LDO – Low Drop-Out (voltage regulator)

PCB - Printed Circuit Board

Q - Quality factor

RF – Radio Frequency

RX - Receive

SiP - System in Package

SNR - Signal to Noise Ratio

SoC - System on Chip

TX - Transmit

Vbat - Battery Voltage

VIO – external pre-existing 1.8V IO power supply

WLAN - Wireless Local Area Network

1.5 Reference documents

■ Texas Instruments WL180x_Data_Manual_Rev_1_2.pdf

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

1	OV	VERVIEW	2
	1.1	Features	2
	1.2	APPLICATIONS	2
	1.3	GENERAL DESCRIPTION	2
	1.4	TERMS AND ABBREVIATIONS	3
	1.5	REFERENCE DOCUMENTS	3
2	FU	NCTIONAL BLOCK FEATURES	5
	2.1	FUNCTIONAL BLOCK DIAGRAM	5
	2.2	WLAN FEATURES	6
3	DE	ETAILED DESCRIPTION	7
	3.1	HOST INTERFACES	7
	3.2	CLOCKS AND POWER MANAGEMENT	7
	3.3	WLAN FUNCTIONAL BLOCK	11
	3.4	TERMINAL ASSIGNEMENTS	12
	3.5	TERMINAL FUNCTIONS	13
4	DE	ESIGN GOAL SPECIFICATIONS	19
	4.1	GENERAL CHIP REQUIREMENTS AND OPERATION	19
	4.2	WLAN RF Performance	22
	4.3	INTERFACE TIMING CHARACTERISTICS	26
	4.4	PACKAGE MECHANICAL DRAWING	28
	4.5	SCHEMATIC	29
5	LE	CAD-FREE PRODUCT STATUS	30
6	RE	ECOMMENDED REFLOW PROFILE	31
7	PA	CKING INFORMATION	32
8	RE	EVISION HISTORY	35
D]	ISPLA	AY OF ORDERING CODES FOR EPCOS PRODUCTS	35

Standard Laminate SiP Module

R078 (WL1807) / D7022

2 Functional Block Features

2.1 Functional Block Diagram

Figure 2-1 shows a high-level view of R078 (WL1807) / D7022 along with its various configurations. The flexibility of the R078 (WL1807) / D7022 based on WL1807 enables easy integration with various host-system topologies.

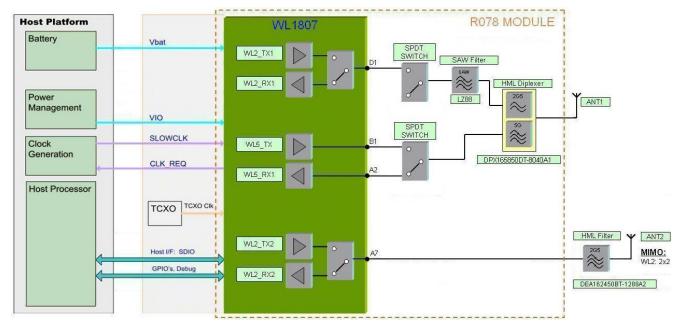


Figure 2-1 High-Level System Diagram

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

2.2 WLAN Features

- Integrated 2.4 & 5GHz power amplifiers for complete WLAN solution
- WLAN MAC Baseband Processor and RF transceiver IEEE802.11a/b/g/n compliant
- WLAN 11n 40 MHz (SISO) and 2.4GHz 11n 20 MHz (MIMO, requires external RF filtering)
- Baseband Processor
 - IEEE Std 802.11a/b/g data rates and IEEE Std 802.11n data rates up to 40 MHz SISO and 20 MHz MIMO (MCS7 with SGI)
- Fully calibrated system. No production calibration required.
- Medium-Access Controller (MAC)
 - Embedded ARM™ Central Processing Unit (CPU)
 - Hardware-Based Encryption/Decryption Using 64-, 128-, and 256-Bit WEP, TKIP or AES Keys,
 - Supports requirements for Wireless Fidelity (Wi-Fi) Protected Access (WPA and WPA2.0) and IEEE Std 802.11i [Includes Hardware-Accelerated Advanced-Encryption Standard (AES)]
 - Designed to work with IEEE Std 802.1x
- 2.4/5.0 GHz Radio
 - Internal LNA, PA and RF switch
 - Supports: IEEE Std 802.11a, 802.11b, 802.11g and 802.11n
- Supports 4 bit SDIO host interface, including high speed (HS) and V3 modes

R078 (WL1807) / D7022

3 Detailed Description

3.1 Host Interfaces

3.1.1 WLAN SDIO Transport Layer

The SDIO is the primary host interface for Device WLAN. The interface between the host and the Device is a standard SDIO interface (matching SDIO specification) and supports a maximum clock rate of 50MHz.

The Device SDIO also supports the following features of the SDIO V3 specification:

- 1 and 4 bit data bus
- Synchronous and Asynchronous In-Band-Interrupt
- Default and High-Speed timing
- Sleep/wake commands

SDIO timing specifications are given in specification section at end of document.

3.2 Clocks and Power Management

3.2.1 Slow Clock / RTC clock

The slow clock is a free-running clock of 32.768 KHz which is supplied from an external clock source. It is connected to the RTC_CLK pin and is a digital square-wave signal in the range of 0-1.8V nom.

3.2.2 Fast Clock System

3.2.2.1 Fast clock using external crystal

The devices incorporate an internal crystal oscillator circuit for supporting a cost optimized crystal based fast clock scheme. Connection is as shown:

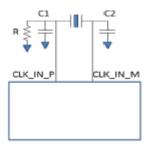


Figure 3-1 XTAL Connection

C1 = C2. Typically 8 - 22pF. Refer to Crystal manufacturer's recommendations. R = 390K ohm (+/- 5% tolerance).

NOTE: this arrangement does not support 5GHz band functions.

Standard Laminate SiP Module

R078 (WL1807) / D7022

3.2.2.2 Fast Clock using external oscillator

CLK_IN_P is the main system fast clock and must meet the specifications as described in "Fast clock specifications" at the end of this document.

The clock must be one of the specified frequencies and the device incorporates an internal mechanism to detect this. The clock can be AC or DC coupled, sine or square wave.

Crystal operation is supported as shown:

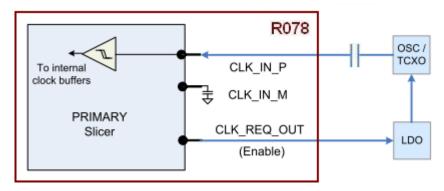


Figure 3-2 Fast Clock Block Diagram

3.2.3 Power Management

3.2.3.1 Block Diagram - internal DC2DC's

The Device incorporates three internal DC2DC's (switched-mode power supplies) to provide efficient internal and external supplies, derived from Vbat.

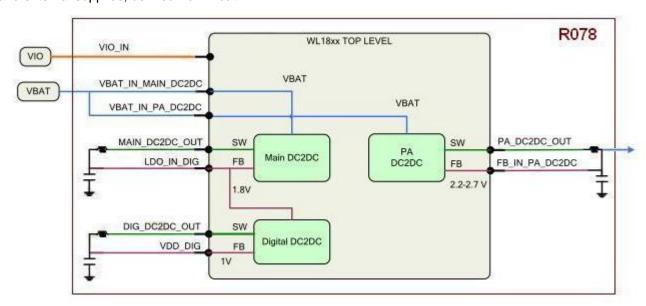


Figure 3-3 Internal DC2DC's

SAW IT

Standard Laminate SiP Module

R078 (WL1807) / D7022

3.2.4 Reset / Power up system

After Vbat and VIO are fed to Device and while WLAN_EN are de-asserted (LOW), the device is in Shutdown state.

While in Shutdown state all functional blocks, internal DC2DC's and LDO's will be disabled. The power supplied to the functional blocks is cut off.

When the signal; WLAN_EN is asserted (High) a Power On Reset (POR) is performed.

Slow Clock, VIO and Vbat are pre-requisites for successful POR.

3.2.4.1 Chip Top-level Power Up Sequence

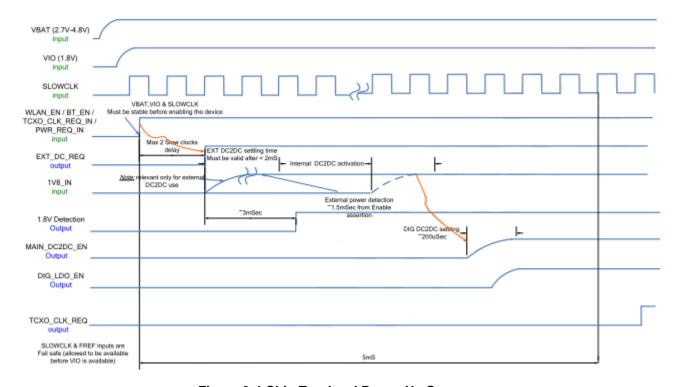


Figure 3-4 Chip Top-level Power Up Sequence

Standard Laminate SiP Module

R078 (WL1807) / D7022

3.2.4.2 WLAN Power Up Sequence

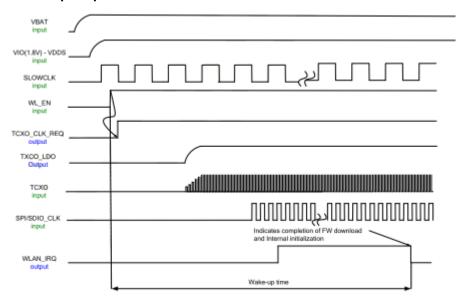


Figure 3-5 WLAN Power Up Sequence

R078 (WL1807) / D7022

3.3 WLAN Functional Block

3.3.1 WLAN MAC

R078 (WL1807) / D7022 MAC implements the IEEE standard 802.11 MAC sub-layer using both dedicated hardware and embedded firmware. The MAC hardware implements real-time functions, including access protocol management, encryption and decryption.

3.3.2 WLAN Baseband Processor

R078 (WL1807) / D7022 baseband processor implements the IEEE 802.11a/b/g/n PHY sub layers and has been optimized to perform well in conditions of high multipath and noise.

3.3.3 WLAN RF Radio

R078 (WL1807) / D7022 WLAN radio is a highly integrated radio processor designed for 802.11a/b/g/n applications, including internal front-end PA's.

3.3.4 WLAN RF Configuration and Power Options

The R078 (WL1807) / D7022 includes all RF switches, band pass filters and diplexer for complete WLAN (SISO) RF system. MIMO configuration is also supported with external duplexer.

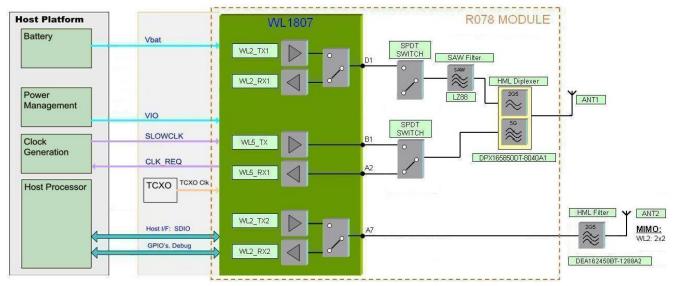


Figure 3-6 R078 (WL1807) / D7022 MIMO configuration

3.3.4.1 MIMO configuration (WL1807 device)

The diagram above shows WLAN pins in standard SISO and MIMO application (requires external band pass filter).

Standard configuration for SISO/MIMO:

- WLAN 2.4/5GHz
- WLAN 2.4GHz MIMO

DIGITAL

RF

GND

CLOCK

DIGITAL

Not Used

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

3.4 Terminal Assignements

The view is from top side: GND GND GND GND GND NU SDIO_D2_ WL SDIO CLK GND GND NU GND GND GND NU GND NU GND GND NU 11 DC2DC_R EQ_MODE _SOC CLK_REC _OUT 10 GND NU 10 SLOW_CL 9 GND COEX_M WS_BT_W COEX_M WS_FRAM E_SYNC VLAN_BG GND NU GND GND NU NU GND GND NU NU 8 GND L_TX_O COEX_M WS_ACTI VE COEX M GND NS_RX_P NH NU GND NH GND GND GND GND GND NH EM_WL DC2DC_R EQ_OUT_ SOC WLAN_IR Q GND GND NU GPIO_2 GND GND WLAN_EN _SOC FEM_PA_ EN_WL GND GPIO_1 GND GND GND GPIO_3 VBAT1 VBAT2 VBAT3 GND NU NU NU GND GND NU NU NU GND 3 2 GND GND GND GND GND CLK_IN_P CLK_IN_M GND GND GND GND GND

Figure 3-7 Terminal Assignements

Top view

Standard Laminate SiP Module

R078 (WL1807) / D7022

3.5 Terminal Functions

Pin names and pin numbers in bracket apply to WSP pin out.

Table 3-3 Terminal Functions

Module Pin Name	Pin Name Module I/O Shut Default Buffe		Buffer	Description				
(WSP Pin Name)	Pin No.	Туре	Down	after	Type			
	(WSP ball		state	POR	[mA]			
	no.)							
WLAN pins: I/O signals								
SDIO_CLK_WL (SDIO_CLK_WL)	G11 (E11)	IN	HiZ	HiZ		WLAN SDIO clock. Must be driven		
						by the host.		
SDIO_CMD_WL(SDIO_CMD_WL)	F9 (D8)	IN	HiZ	HiZ		WLAN SDIO command in. Host		
						must pull up.		
SDIO_D0_WL (SDIO_D0_WL)	G10 (E10)	I/O	HiZ	HiZ		WLAN SDIO data bit 0. Host must		
						pull up.		
SDIO_D1_WL (SDIO_D1_WL)	G9 (E9)	I/O	HiZ	HiZ		WLAN SDIO data bit 1. Host must		
						pull up.		
SDIO_D2_WL (SDIO_D2_WL)	F11 (D11)	I/O	HiZ	HiZ		WLAN SDIO data bit 2. Host must		
						pull up.		
SDIO_D3_WL (SDIO_D3_WL)	F10 (D10)	I/O	HiZ	PU		WLAN SDIO data bit 3. Changes		
, ,	, ,					state to PU at WL_EN assertion		
						for card detect. Later disabled by		
						the SW during init. Host must pull		
						up.		
WLAN_IRQ (IRQ_WL)	G6	OUT	PD	Drive 0		SDIO available, interrupt out.		
	(E3)					Active low. To use WL_RS232_TX		
						/ RX lines, need to force 1 on this		
						pin prior to power up.		
GPIO_1 (GPIO1)	K5 (H1)	I/O	PD	PD		Option: WL_RS232_TX (when		
, , ,	, ,					IRQ_WL = 1 at power up)		
GPIO_2 (GPIO2)	J6 (H2)	I/O	PD	PD		Option: WL_RS232_RX (when		
						IRQ_WL = 1 at power up)		
GPIO_3 (UART_DBG_WL)	K4 (G4)	OUT	PU	PU		WLAN logger Option: GPIO3		
FEM_PA_EN_WL	H5 (F2)	IN				Optional: Ext PA enable		
(PA_EN_FEM_WL)								
RX_SW_FEM_WL	G7 (F3)					Optional: Ext FEM RXSW control		
PBIAS_TESTP_W	C6 (C7)	ANA				Optional: Ext FEM bias control		
(PABIAS_OUT_FEM_TESTP_WL)	, ,							
PDET_TESTM_W	C5 (C6)	ANA				Optional: Ext FEM detector voltage		
(PDET_IN_FEM_TESTM_WL)						feedback		
WLAN Pins: RF antenna								
11abg_ANT_1	A3	RF				WLAN ABG RX and TX 50Ω input		
						and output. No external matching		
						required.		
WLAN_BG2	A8	RF				Second 2.4GHz WLAN BG input		
						and output for MIMO functionality.		
						Requires external RF filter.		
Clock pins								
CLK_IN_P	F2 (E4)	ANA				FREF/TCXO/XTALP input for all		
						functional blocks		
CLK_IN_M	G2 (E5)	ANA				Will be used only for XTAL		
						Connect to GND if not used		
SLOW_CLK (RTC_CLK)	J9 (H8)	ANA				Sleep clock 32.768 kHz		

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

Module Pin Name (WSP Pin Name)	Module Pin No. (WSP ball no.)		Shut Down state	Default after POR	Buffer Type [mA]	Description
CLK_REQ_OUT	K10 (K11)	OUT	PD	PD		Request external fast clock NC if not used.
Enable pins						
WLAN_EN_SOC (WLAN_EN) Power management pins	G5 (E1)	IN	PD	PD		High = enable
VBAT1	M4	POW			I	Battery voltage
VBATT VBAT2	N4	POW				Battery voltage
VBAT3	P4	POW				Battery voltage
VIO	D12	POW				1.8V I/O power supply
PA_DC2DC_IN	J1	POW				PA power supply input, with internal PA_DC2DC connect to pin PA_DC2DC_OUT K1.
PA_DC2DC_OUT DC2DC_REQ_OUT_SOC	K1 F6 (D3)	POW	PD	PD		DC2DC output for PA supply, with internal PA_DC2DC connect to pin PA_DC2DC_IN J1. Request external DC2DC to turn
(DC2DC_REQ_OUT)			PD	PD		ON. Open source o/p. Not used – leave NC
DC2DC_REQ_MODE_SOC (DC2DC_REQ_MODE)	J10 (J10)	OUT	PU	PD		Request eternal DC2DC to change to PWM mode. Open source o/p. Not used – leave NC
Co-existence signals		T			1	
COEX_MWS_RX_PRI	H7 (G5)	I/O	PD	PD		General purpose IO.
(COEX_MWS_UART_RX) COEX_MWS_BT_WL_TX_O	H8 (G7)	I/O	PD	PD		NC if not used. General purpose IO.
(COEX_MWS_UART_TX)	110 (01)	", "				NC if not used.
COEX_MWS_ACTIVE (COEX_MWS_PRE_TX)	F7 (G8)	I/O	PD	PD		General purpose IO. NC if not used.
COEX_MWS_FRAME_SYNC (COEX_MWS_FRAME_SYNC)	J8 (H7)	I/O	PD	PD		General purpose IO. NC if not used.
Not used pins						NO II Hot docu.
NU	A6					NC
NU	B10 (G11)					NC
NU	B11 (G9)					NC
NU	B12 (H11)					NC
NU	C4 (F9)					NC
NU	C7 (F8)					NC
NU	C8 (F11)					NC
NU	D8 (F10)					NC
NU	D9 (E8)					NC
NU	D10 (B11)					NC
NU	E4 (E2)					NC
NU	F4 (E7)					NC
NU	G4 (F7)					NC
NC	H4 (G6)					NC

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

Module Pin Name	Module	I/O	Shut	Defaul	Buffer	Description
(WSP Pin Name)	Pin No.	Туре	Down	after	Type	
	(WSP ball no.)		state	POR	[mA]	
NU	H6 (G2)					NC
NU	J4 (F6)					NC
NU	J5 (H3)					NC
NU	J7 (H5)					NC
NU	J11 (G10)					NC
NU	J12 (J8)					NC
NU	K6 (J4)					NC
NU	K7 (K4)					NC
NU	K8 (K5)					NC
NU	K9 (J7)					NC
NU	K12 (K8)					NC
NU	L6 (H6)					NC
NU	L8 (L7)					NC
NU	L9 (K7)					NC
NU	L11 (L11)					NC
NU	L12 (M10)					NC
NU	M12 (M9)					NC
NC	P6 (M7)					NC
NC	P7 (M5)					NC
NU	P8 (L5)					NC
NU	P9 (M6)					NC
NU	P11 (K6)					NC
Ground pins				1		
GND	A1	GND				
GND	A2	GND				
GND	A4	GND				
GND	A5	GND				
GND	A7	GND				
GND	A9	GND				
GND	A10	GND				
GND	A11	GND				
GND	A12	GND				
GND	B1	GND				
GND	B2	GND				
GND	B3	GND				
GND	B4	GND				
GND	B5	GND				
GND	B6	GND				
GND	B7	GND				

SAW IT

2014-12-9

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

Module Pin Name (WSP Pin Name)	Module Pin No.	I/O Type	Shut Down		Buffer Type	Description
(WSF Fill Name)	(WSP ball no.)	ı ype	state	POR	[mA]	
GND	B8	GND				
GND	B9	GND				
GND	C1	GND				
GND	C2	GND				
GND	C3	GND				
GND	C9	GND				
GND	C10	GND				
GND	C11	GND				
GND	C12	GND				
GND	D1	GND				
GND	D2	GND				
GND	D3	GND				
GND	D4	GND				
GND	D5	GND				
GND	D6	GND				
GND	D7	GND				
GND	D11	GND				
GND	E1	GND				
GND	E2	GND				
GND	E3	GND				
GND	E5	GND				
GND	E6	GND				
GND	E7	GND				
GND	E8	GND				
GND	E9	GND				
GND	E10	GND				
GND	E11	GND				
GND	E12	GND				
GND	F1	GND				
GND	F3	GND				
GND	F5	GND				
GND	F8	GND				
GND	F12	GND				
GND	G1	GND				
GND	G3	GND				
GND	G8	GND				
GND	G12	GND				
GND	H1	GND				
GND	H2	GND				

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

Module Pin Name	Module	I/O	Shut	Default	Buffer	Description
(WSP Pin Name)	Pin No.	Туре	Down	after	Type	
	(WSP ball		state	POR	[mA]	
GND	no.) H3	GND				
GND	H9	GND				
GND	H10	GND				
GND	H11	GND				
GND	H12	GND				
GND	J2	GND				
GND	J3	GND				
GND	K2	GND				
GND	K3	GND				
GND	K11	GND				
GND	L1	GND				
GND	L2	GND				
GND	L3	GND				
GND	L4	GND				
GND	L5	GND				
GND	L7	GND				
GND	L10	GND				
GND	M1	GND				
GND	M2	GND				
GND	M3	GND				
GND	M5	GND				
GND	M6	GND				
GND	M7	GND				
GND	M8	GND				
GND	M9	GND				
GND	M10	GND				
GND	M11	GND				
GND	N1	GND				
GND	N2	GND				
GND	N3	GND				
GND	N5	GND				
GND	N6	GND				
GND	N7	GND				
GND	N8	GND				
GND	N9	GND				
GND	N10	GND				
GND	N11	GND				
GND	N12	GND				
GND	P1	GND				

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

(WSP Pin Name)			Down	after	Buffer Type [mA]	Description
GND	P2	GND				
GND	P3	GND				
GND	P5	GND				
GND	P10	GND				
GND	P12	GND				

R078 (WL1807) / D7022

4 Design Goal Specifications

Section Disclaimer

This Specification is based upon the Texas Instruments WL180x Data Sheet version 1.2, and is subject to any subsequent changes in applicable Texas Instruments documentation and software.

Any parameter marked TBD indicates that this is yet to be determined by TDK design/testing. Any parameter marked TBC indicates that this is yet to be determined in an update of Texas Instruments documentation.

4.1 General Chip Requirements and Operation

All parameters are measured as follows unless stated otherwise: VIO=1.8V

4.1.1 Absolute Maximum Ratings (1)

			Value	Unit	
VBAT ⁽²⁾			-0.5 to 5.5 ⁽⁴⁾	V	
VIO			-0.5 to 2.1	V	
Input voltage to Analog	pins ⁽³⁾		-0.5 to 2.1	V	
Input voltage to all other	pins	-0.5 to (VDE			
Operating ambient temp	erature range		-40 to +85 ⁽⁵⁾	°C	
Storage temperature rar	nge		-55 to +125	°C	
ESD Stress Voltage (6)	Human Body Model (7)	RF pins	>500	V	
		Other	>1000	V	
	Charged Device Model (8)	RF pins	>300	V	
		Other	>250	V	

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The following signals are from the VBAT group: VBAT1, VBAT2.
- (3) Analog pins: WLAN_BG2, WLAN_RXA1, 11abg_ANT_1, FEM_PABIAS_WLAN, FEM_PDET_WLAN.
- (4) 5.5V up to 10s cumulative in 7 years. 5V cumulative to 250s, 4.8V cumulative to 2.33 years all includes charging dips and peaks.
- (5) Operating free-air temperature range. The device can be reliably operated for 7 years at T_{ambient} of 85°C, assuming 25% active mode and 75% sleep mode (15,400 cumulative active power-on hours).
- (6) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
- (7) Level listed is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions are taken. Pins listed as 1000V may actually have higher performance.
- (8) Level listed is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 250V CDM is possible if necessary precautions are taken. Pins listed as 250 V may actually have higher performance.

SAW IT

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

4.1.2 Recommended Operating Conditions

Rating	Condition	Sym	Min	Мах	Unit
1.8V core supply voltage			1.7	1.95	V
Vbat	DC supply range for all modes		3.4	4.3	
IO high-level input voltage		VIH	0.65 x VDD_IO	VDD_IO	
IO low-level input voltage		VIL	0	0.35 x VDD_IO	
Enable inputs high-level input voltage		Vih_en	1.365	VDD_IO	
Enable inputs low-level input voltage		Vil_en	0	0.4	
High-level output voltage	@4 mA	VOH	VDD_IO - 0.45	VDD_IO	
	@ 1 mA		VDD_IO - 0.112	VDD_IO	
	@0.3 mA		VDD_IO- 0.033	VDD_IO	
Low-level output voltage	@4 mA	VOL	0	0.45	
	@ 1 mA		0	0.112	
	@0.09 mA		0	0.01	
Input transitions time Tr/Tf from 10% to 90% (Digital IO) (1)		Tr/Tf	1	10	ns
Output rise time from 10% to 90% (Digital pins) (1)	CL <25 pF	Tr		5.3	ns
Output fall time from 10% to 90% (Digital pins) (1)	CL <25 pF	Tf		4.9	
Ambient operating temperature			-40	+85	°C

⁽¹⁾ Applies to all Digital lines except SDIO, SPI, UART, I2C, PCM and slow clock lines

4.1.3 External Digital Slow Clock Requirements (-40°C to +85°C)

The supported digital slow clock is 32.768 kHz digital (square wave). All core functions share a single input.

Characteristics	Condition	Sym	Min	Тур	Max	Unit
Input slow clock frequency				32768		Hz
Input slow clock accuracy	WLAN, BT				±250	ppm
(initial + temp + aging)						
Input transition time Tr/Tf -IO% to 90%		Tr/Tf			100	ns
Frequency input duty cycle			15	50	85	%
Input voltage limits	Square wave, DC-coupled	Vih	0.65xVDD_I O		VDD_IO	Vpeak
		Vil	0		0.35xVDD_I O	
Input impedance			1			ΜΩ
Input capacitance					5	pF

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

4.1.4 External fast clock Crystal Requirements and operation (-40°C to +85°C)

Characteristics	Condition	Min	Тур	Max	Unit
Supported frequencies		26, 38.	4		MHz
Frequency accuracy	Initial + temp + aging			±20	ppm
Load capacitance, C _L ⁽¹⁾		5		13	pF
Equivalent Series Resistance, ESR				60	ohms
Drive level			100		uW

¹⁾ Load capacitance, CL = [C1.C2] / [C1 + C2] + CP, where C1, C2 are the capacitors connected on $CLK_IN_P & CLK_IN_M$ respectively and CP is the parasitic capacitance (typically 1-2pF).

For example, for C1 = C2 = 12pF and CP = 2pF, then CL = 8pF.

4.1.5 External TCXO CLK Requirements (-40°C to +85°C)

Parameter		Conditions		Min	Тур	Max	Unit
Supported frequency				26, 38.	4	•	MHz
Frequency accuracy		Total short and long ter	m			±20	ppm
Input voltage limits (TC	XO_P)	Sine wave/	2.4GHz WLAN	0.2	1.4 Vp-p		Vp-p
		ac-coupled	5GHz WLAN	0.8		1.4	
Input impedance,	RP	Input resistance	tance				kΩ
26 MHz	СР	Input capacitance				2.5	pF
Input impedance,	RP	Input resistance					kΩ
38.4 MHz	СР	Input capacitance				2.5	pF
Power-up time (1)	•					5	ms
Phase noise 2.4GHz fo	r 38.4MHz	Measured at 1 KHz offs			-120	dBc/Hz	
20MHz SISO ⁽²⁾		Measured at 10 KHz of	fset			-130	dBc/Hz
		Measured at 100 KHz of	offset			-135	dBc/Hz
Phase noise 2.4GHz fo	r 38.4MHz	Measured at 1 KHz offs	set			-125	dBc/Hz
40MHz SISO (2)		Measured at 10 KHz of	fset			-132	dBc/Hz
		Measured at 100KHZ o	ffset			-136.5	dBc/Hz
Phase noise 5GHz for 38.4MHz,		Measured at 1 KHz offset				-125	dBc/Hz
20/40MHz SISO (2)		Measured at 10 KHZ of	fset			-142	dBc/Hz
		Measured at 100KHZ o	ffset			-145	dBc/Hz

⁽¹⁾ Power-up time is calculated from the time CLK_REQ_OUT asserted till the time the TCXO_CLK amplitude is within voltage limit specified above and TCXO_CLK frequency is within ± 0.1 ppm of final steady state frequency.

SAW IT

⁽²⁾ The phase noise numbers listed here must be met at 38.4 MHz. For other frequencies the phase noise requirement is corrected by adding $20 \times \log_{10}(f_{TCXO} / 38.4e6)$ dB. Specifically, for 26 MHz TCXO, the correction factor would be -3.4 dB.

^{*} The slope of the clock at zero-crossings should not be less than that of a 200 mVp-p sine-wave . i.e. 26MHz clock: 16V/μs (for 11bg band) 38.4MHz clock: 24V/μs (for 11bg band)

R078 (WL1807) / D7022

4.2 WLAN RF Performance

All specifications in this draft data sheet are design goal level and subject to change. All specifications have been measured using TDK CB (Carrier Board) and are given at the module pins (Carrier Board insertion loss is de-embedded). All measurements have been performed over VBAT voltage range from 3.4V to 4.3V and over temperature range from -40°C to 85°C.

4.2.1 WLAN 2.4 GHz Radio Characteristics

4.2.1.1 WLAN 2.4 GHz Receiver RF Characteristics

Characteristics	Condition	Min	Тур	Max	Unit
Operation frequency range		2400		2480	MHz
Sensitivity (ANT1)	1 Mbps DSSS			-91	dBm
20MHz bandwidth.	54 Mbps OFDM			-70	
At < 10% PER limit	MCS7			-65	
Max Input Level	OFDM (11g/n)	–19			dBm
At < 10% PER limit	CCK	-4			
Adjacent Channel Rejection at	2Mbps	42.7			dB
sensitivity level +3 for OFDM and	11 Mbps	37.9			
+6 for CCK	54 Mbps	2			
LO leakage			-80		dBm

4.2.1.2 WLAN 2.4 GHz Receiver Blocking Characteristics Per Band

The R078 (WL1807) / D7022 is designed to coexist with co-located cellular transmitters. Table below lists typical cellular interference sources and the corresponding maximum power from the cellular interference source that can be present at the input terminal of R078 (WL1807) / D7022, such that WLAN receiver sensitivity is not degraded by more than 1 dB. (Further improvement is achieved by antenna isolation)

Characteristics	Condition	Min Typ Max Unit
Blocking performance at other bands	776 to 794 MHz (CDMA)	+10 dBm
	824 to 849 MHz (GMSK)	+10
	824 to 849 MHz (EDGE)	+10
	824 to 849 MHz (CDMA)	+10
	880 to 915 MHz (GMSK)	+21
	880 to 915 MHz (EDGE)	+21
	1710 to 1785 MHz (GMSK)	+3
	1710 to 1785 MHz (EDGE)	+3
	1850 to 1910 MHz (GMSK)	-3
	1850 to 1910 MHz (EDGE)	-3
	1850 to 1910 MHz (CDMA)	-10
	1850 to 1910 MHz (WCDMA)	-10
	1920 to 1980 MHz (WCDMA)	-10

^{* 11}n 40MHz bandwidth function is available. However the RF performance is guaranteed by only WL180x.

R078 (WL1807) / D7022

4.2.1.3 WLAN 2.4 GHz Transmitter power

RF transmission (Tx) tests are done in continuous transmission.

Characteristics	Condition	11abg_A	NT_1 pii	า	WLAN_BG2 pin			Unit
		Min	Тур	Max	Min	Тур	Max	
Maximum output power	1 Mbps	+12	+15					dBm
-Notice that	11Mbps	+12	+15					
WLAN_BG2 path	6 Mbps at EVM: -10 dB,	+10	+13		+16	+19		
requires external RF	54 Mbps at EVM: -25 dB	+9	+12		+13.5	+15		
filter.	MCS0 (Greenfield) at	+9	+13		+15.6	+19		
	EVM: -10 dB							
	MCS7 (Greenfield) at	+8	+11		+12.1	+14		
	EVM: -28 dB							
Output power accuracy			±1.5			±1.5		dB
Transmit power control resolution			0.125			0.125		dB

4.2.1.4 WLAN 2.4 GHz Transmitter out-of-band emissions

Table below shows 2.4GHz WLAN transmitter out-of-band emissions for each band listed in the Condition column. The wideband noise at 2.4GHz WLAN antenna port is also listed.

Characteristics	Condition	Min Typ	Max	Unit
Cellular bands out-of-band broadband	746 to 764 MHz (CDMA1)		-145	dBm/Hz
emissions(1)	869 to 894 MHz (GSM850)		-145	
	925 to 960 MHz (EGSM900)		-138	
	1570 to 1580 MHz (GPS)		-142	
	1596 to 1609 MHz (GLONASS)		-130	
	1805 to 1880 MHz (DCS1800)		-140	
	1930 to 1990 MHz (PCS1900)		-120	
	2110 to 2170 MHz		-129	
Cellular bands out-of-band spurious	746 to 764 MHz (CDMA)		-44.2 ⁽⁴⁾	
emissions	869 to 894 MHz (CDMA, GSM850)		-44.2 ⁽⁴⁾	
	925 to 960 MHz (EGSM900)		-44.2 ⁽⁴⁾	
	1570 to 1580 MHz (GPS)		-44.2 ⁽⁴⁾	
	1805 to 1880 MHz (DCS1800)		-44.2 ⁽⁴⁾	
	1930 to 1990 MHz (PCS1900, CDMA)		-44.2 ⁽⁴⁾	
	2110 to 2170 MHz		-44.2 ⁽⁴⁾	
Spurious emission during operation at	30MHz – 1GHz		$-55^{(2)}$	dBm
1MHz RBW	2 nd harmonic		-33 ⁽³⁾	
	3 rd harmonic		-33 ⁽³⁾	
	4 th harmonic		-33 ⁽³⁾	
	5 th harmonic		$-33^{(3)}$	

⁽¹⁾ Figures are for max transmission power for all available modulations. The setup noise floor is -167dBm/Hz.

⁽²⁾ Based on TI IC performance

⁽³⁾ ETSI limit plus 3dB margin

⁽⁴⁾ FCC conductive limit plus 3dB margin

R078 (WL1807) / D7022

4.2.1.5 2.4GHz WLAN Current Consumption

Active Current				
Spec item (1)	MIN	TYP	MAX	Units
Tx 11CCK @15dBm		345	380	mΑ
Tx 54OFDM @12dBm		290	320	mΑ
Rx		65	75	mΑ

⁽¹⁾ All measured at ANT1 and the 3.6V VBAT rail of the solution. TCXO current included.

4.2.2 WLAN 5 GHz Radio Characteristics

4.2.2.1 WLAN 5 GHz Receiver RF Characteristics

Characteristics	Condition	Min	Тур	Max	Unit
Operation frequency range		4910		5835	MHz
Sensitivity ⁽¹⁾	54 Mbps OFDM			-70	dBm
Notes:					
-20MHz bandwidth.	MCS7			-65	
-At < 10% PER limit					
Max Input Level	802.11a/n	-27			dBm
Adjacent channel rejection	54 Mbps	2			
LO leakage			-53		dBm

⁽¹⁾ The sensitivity is guaranteed at only 36ch (5180MHz).

4.2.2.2 WLAN 5 GHz Receiver Blocking Characteristics Per Band

The R078 (WL1807) / D7022 is designed to coexist with co-located cellular transmitters. Table below lists typical cellular interference sources and the corresponding maximum power from the cellular interference source that can be present at the input terminal of R078 (WL1807) / D7022, such that WLAN receiver sensitivity is not degraded by more than 1 dB. (Further improvement is achieved by antenna isolation)

Characteristics	Condition	Min	Typ Max	Unit
Blocking performance at other bands	776 to 794 MHz (CDMA)	-10		dBm
	824 to 849 MHz (GMSK)	-10		
	824 to 849 MHz (EDGE)	-10		
	824 to 849 MHz (CDMA)	-10		
	880 to 915 MHz (GMSK)	-10		
	880 to 915 MHz (EDGE)	-10		
	1710 to 1785 MHz (GMSK)	-10		
	1710 to 1785 MHz (EDGE)	-18		
	1850 to 1910 MHz (GMSK)	-39		
	1850 to 1910 MHz (EDGE)	-39		
	1850 to 1910 MHz (CDMA)	-39		
	1850 to 1910 MHz (WCDMA)	-39		
	1920 to 1980 MHz (WCDMA)	-23		

R078 (WL1807) / D7022

4.2.2.3 WLAN 5 GHz Transmitter power

RF transmission (Tx) tests are done in continuous transmission.

Characteristics	Condition	Min	Тур	Max	Unit
	6 Mbps at EVM: -10 dB	+10	+12		dBm
	54 Mbps at EVM: -25 dB	+6	+9		
	MCS0 (Greenfield) at EVM: -10 dB	+8	+11		
	MCS7 (Greenfield) at EVM: -28 dB	+7	+14		
Output power		-1.5		+1.5	dB
accuracy					
Transmit power			0.125		dB
control resolution					

4.2.2.4 WLAN 5 GHz Transmitter out-of-band emissions

Table below shows 5GHz WLAN transmitter out-of-band emissions for each band listed in the Condition column. The wideband noise at 5GHz WLAN antenna port is also listed.

Characteristics	Condition	Min Typ	Max	Unit
Cellular bands out-of-band broadband	746 to 764 MHz (CDMA2000)		-143	dBm/Hz
emissions	869 to 894 MHz (GSM850)		-143	
	925 to 960 MHz (EGSM900)		-143	
	1570 to 1580 MHz (GPS)		-145	
	1570 to 1580 MHz (GLONASS)		-145	
	1805 to 1880 MHz (DCS1800)		-110	
	1930 to 1990 MHz (PCS1900)		-105	
	2110 to 2170 MHz (WCDMA FDD)		-142	
Cellular bands out-of-band spurious	746 to 764 MHz (CDMA2000)		-44.2 ⁽⁴⁾	dBm
emissions	869 to 894 MHz (GSM850)		-44.2 ⁽⁴⁾	
	925 to 960 MHz (EGSM900)		-44.2 ⁽⁴⁾	
	1570 to 1580 MHz (GPS)		-44.2 ⁽⁴⁾	
	1570 to 1580 MHz (GLONASS)		-44.2 ⁽⁴⁾	
	1805 to 1880 MHz (DCS1800)		-44.2 ⁽⁴⁾	
	1930 to 1990 MHz (PCS1900, CDMA)		-44.2 ⁽⁴⁾	
	2110 to 2170 MHz (WCDMA FDD)		-44.2 ⁽⁴⁾	
2 nd harmonic	11an		-33 ⁽³⁾	dBm

⁽¹⁾ Figures are for max transmission power for all available modulations. The setup noise floor is -167dBm/Hz.

4.2.2.5 5GHz WLAN Current Consumption

Active Current				
Spec item (1)	MIN	TYP	MAX	Units
Tx 6 OFDM @ 12dBm		420	460	mΑ
Tx 54OFDM @ 9dBm		375	415	mΑ
Rx		75	85	mA

⁽¹⁾ All measured at the 3.6V VBAT rail of the solution. TCXO current included.

⁽²⁾ Based on TI IC performance

⁽³⁾ ETSI Limit plus 3dB margin

⁽⁴⁾ FCC conductive Limit plus 3dB margin

R078 (WL1807) / D7022

4.3 Interface Timing Characteristics

4.3.1 SDIO timing specifications

4.3.1.1 SDIO Switching Characteristics - Default rate input and output

Specification is over recommended operating conditions. Parameters are for default clock frequency.

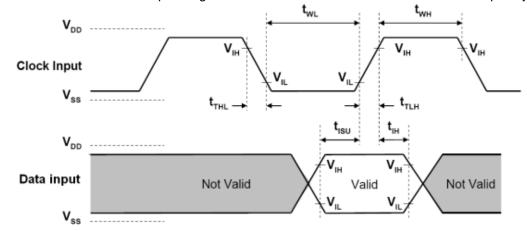


Figure 4-1 SDIO default input timing

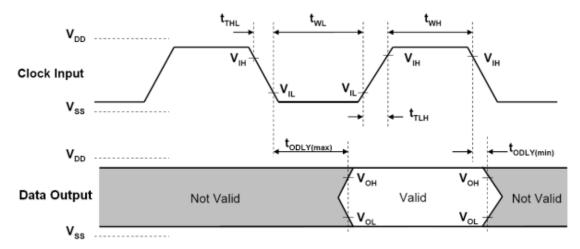


Figure 4-2 SDIO default output timing
Table 4-2 SDIO Switching Characteristics – Deault Rate

Paramete	Parameter		Max	Unit
fclock	Clock frequency, CLK	0	26	MHz
DC	Low/high duty cycle	40	60	%
tTLH	Rise time, CLK		10	ns
tTHL	Fall time, CLK		10	ns
tISU	Setup time, input valid before CLK ↑	3		ns
t _{IH}	Hold time, input valid after CLK ↑	2		ns
tODLY	Delay time, CLK ↓ to output valid	2.5	14.8	ns
CI	Capacitive load on outputs		15	pF

Note: Option to change data out clock edge from falling edge (default) to rising edge, by setting configuration bit.

R078 (WL1807) / D7022

4.3.1.2 SDIO Switching Characteristics - High Rate

Specification is over recommended operating conditions. Parameters are for maximum clock frequency.

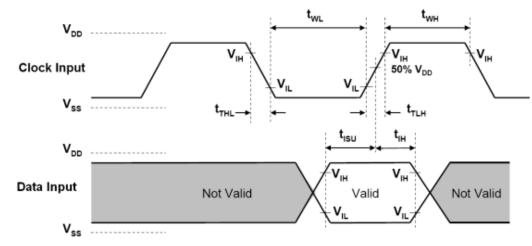


Figure 4-3 SDIO HS input timing

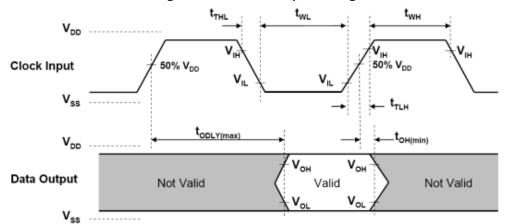
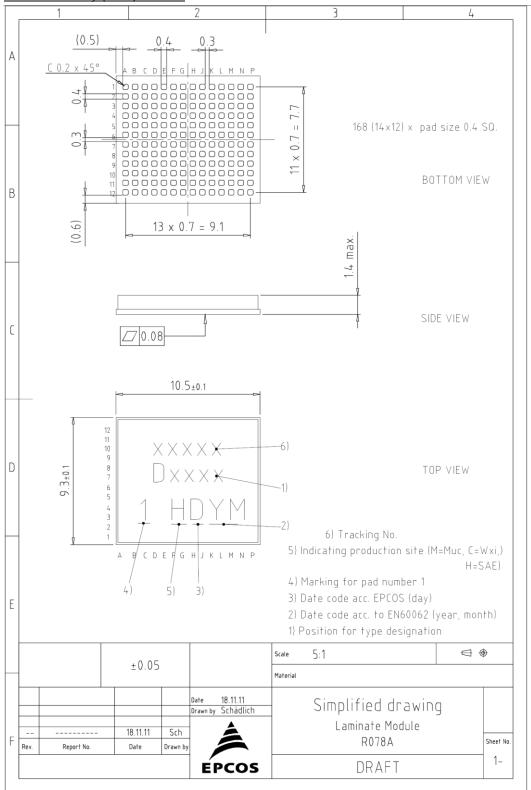
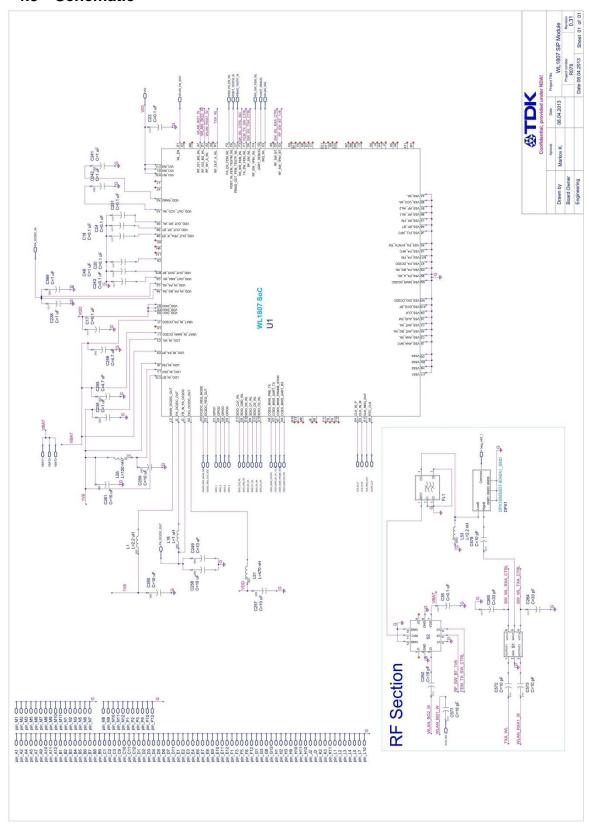


Figure 4-4 SDIO HS output timing


Table 4-3 SDIO Switching Characteristics - High Rate

Parameter		Min	Max	Unit
fclock	Clock frequency, CLK	0	50	MHz
DC	Low/high duty cycle	40%	60%	
tTLH	Rise time, CLK		3	ns
tTHL	Fall time, CLK		3	ns
tISU	Setup time, input valid before CLK ↑	3		ns
t _{IH}	Hold time, input valid after CLK ↑	2		ns
tODLY	Delay time, CLK ↓ to output valid	2.5	14	ns
CI	Capacitive load on outputs		10	pF

R078 (WL1807) / D7022


4.4 Package Mechanical Drawing

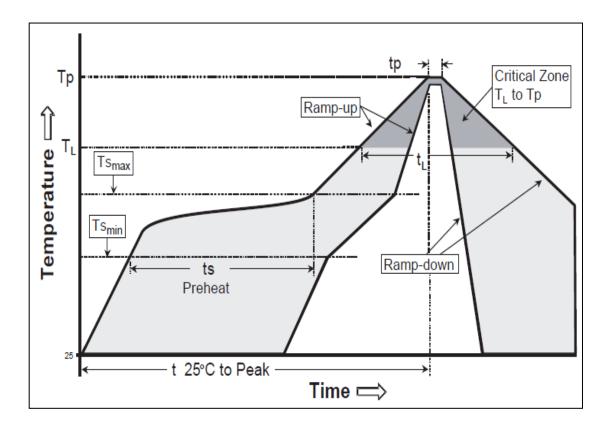
Land Grid Array (LGA) Module

R078 (WL1807) / D7022

4.5 Schematic

B30921D7022Y918

Standard Laminate SiP Module

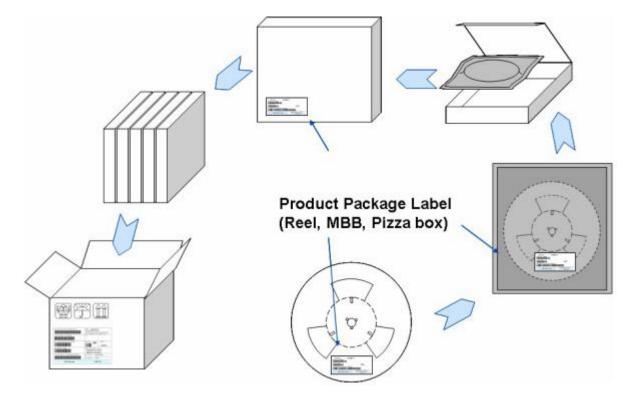

R078 (WL1807) / D7022

5 Lead-free Product Status

All Epcos modules in mass production are lead-free. This is achieved by using only materials with lead contamination below 1000 ppm. The applied lead-free solder alloy is the main source of Pb-contamination, which together gives Pb-levels much below 50 ppm per module.

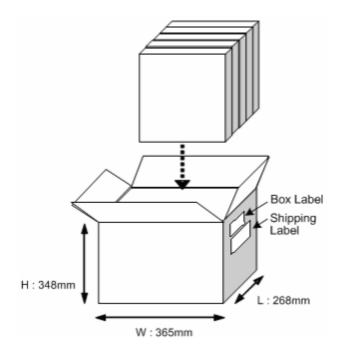
A comprehensive qualification for these lead-free module packages has been done. The related AQTP documentation is available from Epcos on request.

Recommended Reflow Profile

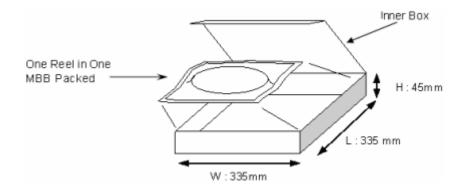

Profile Feature	Range	
Average Ramp-Up Rate (Ts _{max} to Tp)	3°C/second max.	
Preheat: -Temperature Min (Ts _{min}) -Temperature Max (Ts _{max}) -Time (ts _{min} to ts _{max})	150°C 200°C 60-120 seconds	
Time maintained above: -Temperature (T _L) -Time (t _L)	217°C 60-150 seconds	
Peak Temperature (Tp)	245-250°C	
Time within 5°C of actual Peak Temperature (Tp)	20-40 seconds	
Ramp-Down Rate	6°C/second max.	
Time 25°C to Peak Temperature	8 minutes max.	

Standard Laminate SiP Module

R078 (WL1807) / D7022

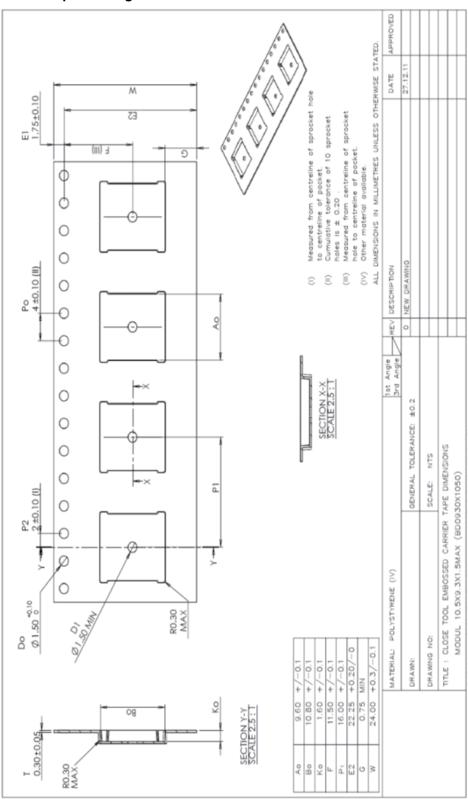

7 Packing Information

7.1.1 Packaging flow



R078 (WL1807) / D7022

7.1.2 Outer Box



7.1.3 Inner Box

R078 (WL1807) / D7022

7.1.4 Tape drawing

B30921D7022Y918

Standard Laminate SiP Module

R078 (WL1807) / D7022

8 Revision History

Version	Date	Status	Note
1.0	27.6.2014	Official Release	Initial
1.1 3.9.2014	3 9 2014	Official Release	Changed 4.1.1 Absolute Maximum Ratings
	0.0.2014		Operating ambient temperature range : -15 to +55 °C
1.2		Official Release	Changed the template of the data sheet
			Updated operation temperature range : -30 to +85°C
	14.10.2014		Updated 4.2.1.3 WLAN 2.4 GHz Transmitter power (1Mbps and 11Mbps)
			Updated 4.2.2.3 WLAN 5 GHz Transmitter power (MCS7)
1.3	9.12.2014	Official Release	Updated operation temperature range : -40 to +85℃

Display of ordering codes for EPCOS products

The ordering code for one and the same EPCOS product can be represented differently in data sheets, data books, other publications, on the EPCOS website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.