
Applications

- 1. Industry machinery power/motor control, Circuit insulation, Circuit pro
- 2. Vehicle battery distribution and back-up.
- 3. Inverter power control.
- 4. Power charging systems control.
- 5. Solar power plant.
- 6. Other DC high-voltage power control.

Product Factors

- Hermetically sealed with epoxy, filled with inactive gases inside of contactor room, combining the magnetic blow-out, make product be smallest, lightest weight, lightest noise an voltage power switching.
- 2. Intrinsically safe, operates in explosive/harsh environments with no oxidation or contamination of coils or contacts, that could assurance contact resistance steadying, at same time, protect the contacts from water and dirt.
- 3. No position sensitive
 Lightly weight of moving parts with huge counter-force and affected lightly by gravity, can be mounted in any position for ease of installation.
- 4. Designed to meet: GB/T14048.1, GB/T14048.4 (IEC60947).
- 5. According with EU RoHS Instruction (2002/95/EC).

Part Number System

Note: The different connectors can be installed on the coil according to the client's requirement.

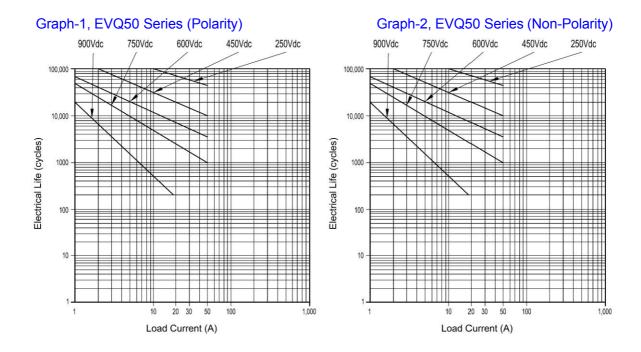
Coil Parameters

Nominal Voltage	Range of Working Voltage (at 20℃)	Pick-up Voltage (at 20℃) (▲1)	Holding Voltage (at 20℃)	Drop-out Voltage (at 20°C) (▲1)	Nominal Current (at 20°C)		Coil Power (at 20°C)	Power- saving PCB	Coil Polar
6Vdc (Us)	Us85% Us110%	Us75% Max.	Us85% Min.	Us10% Min.	545.5mA	11Ω	3.3W	×	×
12Vdc (Us)	Us85% Us110%	Us75% Max.	Us85% Min.	Us10% Min.	266.7mA	45Ω	3.2W	×	×
24Vdc (Us)	Us85% Us110%	Us75% Max.	Us85% Min.	Us10% Min.	143.7mA	167Ω	3.45W	×	×
28Vdc (Us)	Us85% Us110%	Us75% Max.	Us85% Min.	Us10% Min.	116.7mA	240Ω	3.3W	×	×
36Vdc (Us)	Us85% Us110%	Us75% Max.	Us85% Min.	Us10% Min.	90.0mA	400Ω	3.2W	×	×
48Vdc (Us)	Us85% Us110%	Us75% Max.	Us85% Min.	Us10% Min.	76.2mA	630Ω	3.66W	×	×
72Vdc (Us)	Us85% Us110%	Us75% Max.	Us85% Min.	Us10% Min.	45.0mA	1600Ω	3.2W	×	×

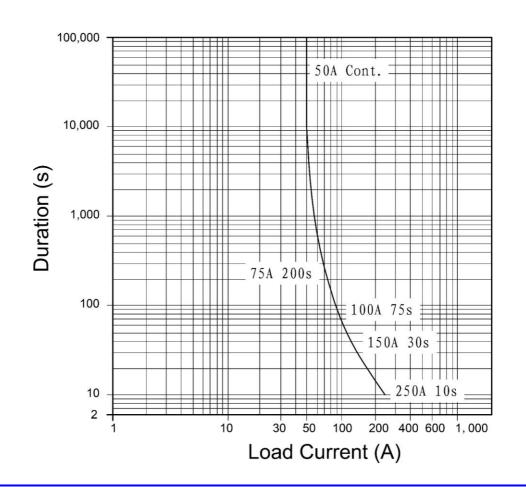
▲1: Pick-up voltage, Drop-out voltage and Coil resistance of products without coil economizer may vary with ambient temperature and operating conditions. Therefore, please note that the following theoretical calculation formula can be obtained according to the temperature coefficient of copper resistance. The calculated value may be slightly different from the actual value.

Temperature rise: $\Delta T = U \times (1 + 0.004 \times K)$, Temperature drop: $\Delta T = U \times (1 - 0.004 \times K)$, where U = rated value at 20°C, K = current ambient temperature - 20.

Functional Data

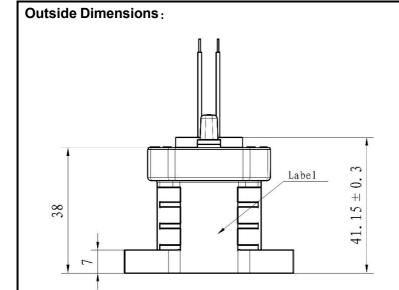

		Type		Contactor		
	Contac	ct Arranç	gement	SPST-NO-DM		
Electric	Cı	urrent Ty	/pe	DC		
	Media typ	e when	cutting-off	Inactive gas		
Types	Oper	ation me	ethod	Electric driven		
	Rating o	peration	n system	Uninterrupted Working System		
	Auxilia	ry Conta	ct (▲7)	×		
	Contact Dal	I	Polarity	√		
	Contact Pol	ıar	Non-Polarity	√		
	Rating Voltage			12-900Vdc		
	Rat	ting Curi	rent	1-50A (▲2)		
	0:	nt Fade		150A 30sec.		
Contact	Current Endurance			250A 10sec.		
Parameters	Break Curre	ent, Max,	, only 1 time	500A 320Vdc		
	Conta	act Resis	stance	1mΩ Max. (at 1A)		
	Operate Time (at 20℃)			25ms Max. (▲3)		
	Bounce Time (at 20℃)			7ms Max. (▲3)		
	Release	e Time (at 20℃)	12ms Max. (▲4)		
	Med	chanical	Life	1×10 ⁶ cycles (▲6)		
Life	Electrical Life		Polarity	Graph-1		
	(▲2,▲5)		Non-Polarity	Graph-2		
	la colo	D	-4	Initial state: 100MΩ Min. (▲1)		
Dielectric	Insulation Resistance			End of life: 50MΩ Min. (▲1)		
Parameters	Dielectric	Between open		AC 2500 Vrms/1mA/1min. (Sea Level)		
	Strength	Betwe	en Contacts and	AC 2500 Vrms/1mA/1min. (Sea Level)		
Mechanical	Shock,1/2sine,11ms			Peak ,20G (Coil energized)		
Parameters	Vibration	,sine,80	Peak ,20G			
Condition	Operating A	mbient 1	Temperature	-40℃ ~ +85℃		
Condition	Operating	Ambien	t Humidity	5% ~ 95% RH.		
	Weight		120±10g			
	Security Certif	ication	CE、CCC、UL			

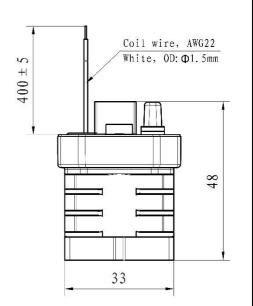
- ▲1: Measurement voltage DC1000V with the same test position as dielectric withstand voltage.
- ▲2: Resistive Load, L/R≤1ms.
- ▲3: Coil nominal voltage, includes bounce.
- ▲4: Coil nominal voltage, without diode.
- ▲5: Switching Rating, ON: OFF=1s:9s.
- ▲6: Switching Rating, ON: OFF=0.5s: 0.5s.
- ▲7: Auxiliary Parameter, Ith: 3A, AC -12: 125V/3A; DC -12: 30V/2A。



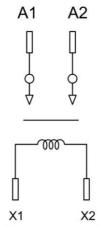
Estimated Electrical Life

Make & Break Switching Rating (Resistive Load L/R≤1ms, ON: OFF=1Sec:9Sec)




Estimated carrying current endurance

Dimensions



Wiring Graph:

E Type

(Load, non-polarity)

(Coil, non-polarity)

Annotation:

1. Unit: mm

Visual Angle: ⊕- □

sual Angle: 🍟 🗁

2. Tolerance(not specified):

< 10mm: ±0.3

10 ~ 50mm: ±0.6

> 50mm: ± 1.0

 Coil wire length and connectors could be customized according to client's requirement.

Installation

Outside	size (bottom area) Unit: mm	51. 26		
Process gra	aph of basic plate Unit: mm	$2 - \phi 4.5^{+0.2}_{-0}$ 43 ± 0.1		
Shape of	Main Contacts Unit: mm	2-M4 × 0. 7 9牙Min. 2-φ8		
Fastener on main contacts	Specification Unit: mm	M4×8		
Commode	Provide or not	√		
Torque range	Bottom of contactor	1.8-2.5Nm		
	Main contacts	1.8-2.5Nm		
Nominal section	n area of conductor	15mm² Min.		

Notes

- Please use the washer to prevent loosening when contact installation. Screw locking torque should in specified range, damage may occur when it is beyond.
- 2. The contactor have two types of contacts, polarity and non-polarity, there is +A1 and -A2 marks on cap of product. Please follow the wiring graph to connect the wire (for current flows from +A1 to -A2), wrong connection may cause malfunction or abnormal heating.
- 3. Please note that could be abnormal fever when using condition is beyond the specified rating value like coil rated, contacts rated and life and so on.
- 4. Please do not use the product when it has fallen down.
- 5. Please avoid installation in strong magnetic field (around the transformers or the magnets) and the heating objects nearby.
- 6. When installing multiple contactors adjacent to each other, please pay attention to the abnormal heating caused by heat interference and the insulation distance between the terminals outside the contactor.
- 7. Life time of the electricity
 - The contactor is high voltage DC switch, it will lose the breaking function during its final shocking module, therefore, it cannot be used by exceeding its breaking capacity and life-time parameter(please consider the contactor as the limited life-time product and change it when necessary). The surrounding components may burnt while the contactor lose its breaking function. So, it is very important to design and protect the circuit properly and make sure the power can be cut within 1 second.
- 8. The spreading life-time of the inner gas.
 - The contactor adopts the sealed cabinet contacting point, there is gas inside of the cabinet, the gas life-time is decided by the temperature inside of the contacting room(environmental temperature + temperature produced by power setup on contacting point),therefore, the environmental temperature should be kept between -40 till +85°C.
- 9. The coil resistance will be increased due to the coil temperature goes up if the rated voltage(or current)setup continuously on the coil and the contacting point, thus, the operating and breaking voltage of the product go up, and the rated voltage may be exceeded or released. Under this condition, the following measurements can be taken: decrease the loading current and limit the continuous power setup time or, adopts the coil voltage higher than the rated ones.
- 10. The rating load of contact is resistive load. Please assure the surge absorption device together with inductive load when using the L/R≥1ms inductive load(L Load),otherwise it may lead to the decrease of electrical life and defective switch
- 11. Drive power must more than coil power, or it will make product's break ability weaker.
- 12. Do wiring should be after power-off.
- 13. Contact resistance may rise when product switching with no load.
- 14. Please avoid grease or other foreign matter on the terminal, and make sure conductors are reliable contact with product's main terminals, otherwise, abnormal heating may occur at terminals.
- 15. When using capacitive load, it is need a pre-charge circuit to assure the impulse current less than contact's rating current, otherwise, it may cause main contacts welding.

Special Claim:

Because the performance is different from each other when it used in different applications, customer could choose the appropriate product according to the specific using conditions. If there is any queries, please contact HOTSON for technical support.