

SIOV metal oxide varistors

Strap varistors, HighE, SuperioR, LS42 series

Series/Type: B722*

Date: April 2011

© EPCOS AG 2011. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

HighE, SuperioR, LS42 series

Construction

- Rectangular varistor element
- Coating: epoxy resin, flame-retardant to UL 94 V-0
- Bolt-holed strap terminals for screw fixing or soldering
- Bent or straight strap terminals

Features

- Dimensions equivalent to SIOV-LS40
- High surge current up to 65 kA
- Wide operating voltage range 250 ... 460 V_{RMS}
- Designed in accordance with the requirements of IEC 61643-1, class II, for low-voltage surge protection devices

Approvals

- **■** UL
- CSA

Delivery mode

■ Vacuum-packed styrofoam box

General technical data

Climatic category	to IEC 60068-1	40/85/56	
Operating temperature	to CECC 42 000	-25 + 85	°C
Storage temperature		−25 +110	°C
Electric strength	to CECC 42 000	≥ 2.5	kV _{RMS}
Insulation resistance	to CECC 42 000	≥ 10	$M\Omega$
Response time		< 25	ns

HighE, SuperioR, LS42 series

Electrical specifications and ordering codes Maximum ratings (T_A = 85 °C)

Ordering code	Туре	V_{RMS}	V_{DC}	i _{max}	I _{max} 1)	I _{nom} ²⁾	W_{max}	P_{max}
-				(8/20 µs)	(8/20 µs)	(8/20 µs)	(2 ms)	
	SIOV-	٧	٧	Α	Α	Α	J	W
Bent strap terminals	Bent strap terminals							
B72242L0251K100	LS42K250QP	250	320	65000	65000	20000	490	1.4
B72242L0271K100	LS42K275QP	275	350	65000	65000	20000	550	1.4
B72242L0321K100	LS42K320QP	320	420	65000	65000	20000	640	1.4
B72242L0381K100	LS42K385QP	385	505	65000	65000	20000	800	1.4
B72242L0421K100	LS42K420QP	420	560	65000	65000	20000	910	1.4
B72242L0441K100	LS42K440QP	440	585	65000	65000	20000	950	1.4
B72242L0461K100	LS42K460QP	460	615	65000	65000	20000	960	1.4
Straight strap terminals								
B72242L0251K102	LS42K250QPK2	250	320	65000	65000	20000	490	1.4
B72242L0271K102	LS42K275QPK2	275	350	65000	65000	20000	550	1.4
B72242L0321K102	LS42K320QPK2	320	420	65000	65000	20000	640	1.4
B72242L0381K102	LS42K385QPK2	385	505	65000	65000	20000	800	1.4
B72242L0421K102	LS42K420QPK2	420	560	65000	65000	20000	910	1.4
B72242L0441K102	LS42K440QPK2	440	585	65000	65000	20000	950	1.4
B72242L0461K102	LS42K460QPK2	460	615	65000	65000	20000	960	1.4

¹⁾ $I_{\text{max}} = \text{Maximum discharge current to IEC 61643-1, class II}$

²⁾ I_{nom} = Nominal discharge current to IEC 61643-1, class II

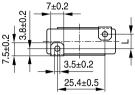
Strap varistors

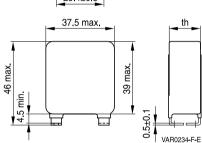
B722⁹

HighE, SuperioR, LS42 series

Characteristics ($T_A = 25$ °C)

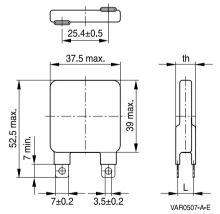
Ordering code	Туре	V_{v}	ΔV_{v}	$V_{c,max}$	i _c	C_{typ}
•		(1 mA)	(1 mA)	(i _c)		(1 kHz)
	SIOV-	V	%	V	Α	pF
Bent strap terminals						
B72242L0251K100	LS42K250QP	390	±10	650	300	2900
B72242L0271K100	LS42K275QP	430	±10	710	300	2700
B72242L0321K100	LS42K320QP	510	±10	840	300	2300
B72242L0381K100	LS42K385QP	620	±10	1025	300	1900
B72242L0421K100	LS42K420QP	680	±10	1120	300	1800
B72242L0441K100	LS42K440QP	715	±10	1180	300	1700
B72242L0461K100	LS42K460QP	750	±10	1240	300	1600
Straight strap terminals						
B72242L0251K102	LS42K250QPK2	390	±10	650	300	2900
B72242L0271K102	LS42K275QPK2	430	±10	710	300	2700
B72242L0321K102	LS42K320QPK2	510	±10	840	300	2300
B72242L0381K102	LS42K385QPK2	620	±10	1025	300	1900
B72242L0421K102	LS42K420QPK2	680	±10	1120	300	1800
B72242L0441K102	LS42K440QPK2	715	±10	1180	300	1700
B72242L0461K102	LS42K460QPK2	750	±10	1240	300	1600



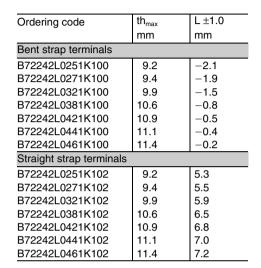

HighE, SuperioR, LS42 series

Dimensional drawings

Bent strap terminals



SIOV-LS42K ... QP


Weight: 25 ... 40 g

Straight strap terminals

SIOV-LS42K ... QPK2

Weight: 25 ... 40 g

Strap varistors

B722⁹

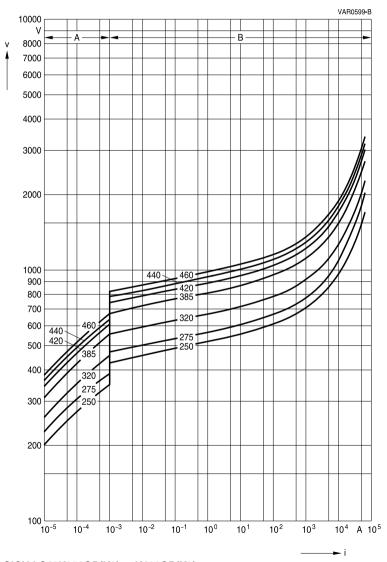
HighE, SuperioR, LS42 series

Reliability data

Test	Test methods/conditions	Requirement		
Varistor voltage	The voltage between two terminals with the specified measuring current applied is called V_{ν} (1 mA _{DC} @ 0.2 2 s).	To meet the specified value		
Clamping voltage	The maximum voltage between two terminals with the specified standard impulse current (8/20 µs) applied.	To meet the specified value		
Max. DC operating voltage	The maximum allowable DC operating voltage V_{DC} at UCT +5/–0 °C is applied for 1000 \pm 48 h. The leakage current I_{leak} (t) during test is recorded. Then the specimen shall be stored at room temperature and normal humidity for 1 to 2 h. Thereafter, the change of V_{V} shall be measured.	$\begin{split} I_{leak} & (t=1000 \ h) \leq I_{leak} \ (t=0 \ h) \\ & \Delta V/V \ (1 \ mA)I \leq & 10\% \end{split}$		
Surge current derating, 8/20 μs	10 surge currents (8/20 µs), unipolar, interval ≥60 s, amplitude corresponding to derating curve for 10 impulses at 20 µs	I∆V/V (1 mA) ≤10% (measured in direction of surge current) No visible damage		
Fast temperature cycling	IEC 60068-2-14, test Na, LCT/UCT, dwell time 30 min, 5 cycles	l∆V/V (1 mA)l ≤10% No visible damage		
Damp heat, steady state	IEC 60068-2-78 The specimen shall be subjected to 40 ± 2 °C, 90 to 95% r. H. for 56 ± 2 days with 10% of the maximum continuous DC operating voltage V_{DC} . Then stored at room temperature and normal humidity for 1 to 2 h. Thereafter, the change of V_V shall be measured.	IΔV/V (1 mA)I ≤10%		

Note:

UCT = Upper category temperature LCT = Lower category temperature



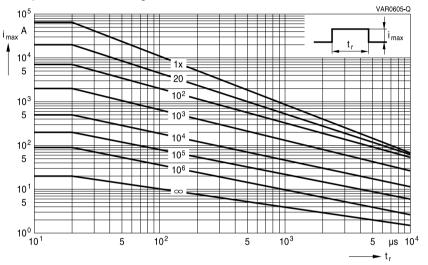
HighE, SuperioR, LS42 series

v/i characteristics

v = f (i) for explanation of the characteristics refer to "General technical information", chapter 1.6.3 A = Leakage current, B = Protection level } for worst-case varistor tolerances

SIOV-LS42K250QP(K2) ... K460QP(K2)

Strap varistors


HighE, SuperioR, LS42 series

B722⁹

Derating curves

Maximum surge current $i_{max} = f(t_r, pulse train)$

For explanation of the derating curves refer to "General technical information", section 1.8.1

SIOV-LS42K250QP(K2) ... K460QP(K2)

HighE, SuperioR, LS42 series

Cautions and warnings

General

- EPCOS metal oxide varistors are designed for specific applications and should not be used for purposes not identified in our specifications, application notes and data books unless otherwise agreed with EPCOS during the design-in-phase.
- Ensure suitability of SIOVs through reliability testing during the design-in phase. SIOVs should be evaluated taking into consideration worst-case conditions.
- 3. For applications of SIOVs in line-to-ground circuits based on various international and local standards there are restrictions existing or additional safety measures required.

Storage

- 1. Store SIOVs only in original packaging. Do not open the package before storage.
- 2. Storage conditions in original packaging:

Storage temperature: -25 °C ... +45 °C,

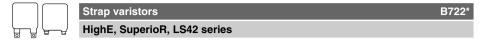
Relative humidity: <75% annual average,

<95% on maximum 30 days a year.

Dew precipitation: is to be avoided.

- 3. Avoid contamination of an SIOV's during storage, handling and processing.
- 4. Avoid storage of SIOVs in harmful environments that can affect the function during long-term operation (examples given under operation precautions).
- 5. The SIOV type series should be soldered within the time specified:

SIOV-S, -Q, -LS, -B, -SFS 24 months ETFV 12 months.


Handling

- 1. SIOVs must not be dropped.
- 2. Components must not be touched with bare hands. Gloves are recommended.
- 3. Avoid contamination of the surface of SIOV electrodes during handling, be careful of the sharp edge of SIOV electrodes.

Soldering (where applicable)

- 1. Use rosin-type flux or non-activated flux.
- 2. Insufficient preheating may cause ceramic cracks.
- 3. Rapid cooling by dipping in solvent is not recommended.
- 4. Complete removal of flux is recommended.

Mounting

- 1. Potting, sealing or adhesive compounds can produce chemical reactions in the SIOV ceramic that will degrade the component's electrical characteristics.
- 2. Overloading SIOVs may result in ruptured packages and expulsion of hot materials. For this reason SIOVs should be physically shielded from adjacent components.

Operation

- 1. Use SIOVs only within the specified temperature operating range.
- 2. Use SIOVs only within the specified voltage and current ranges.
- Environmental conditions must not harm SIOVs. Use SIOVs only in normal atmospheric conditions. Avoid use in deoxidizing gases (chlorine gas, hydrogen sulfide gas, ammonia gas, sulfuric acid gas etc), corrosive agents, humid or salty conditions. Contact with any liquids and solvents should be prevented.

HighE, SuperioR, LS42 series

Symbols and terms

Symbol	Term
C	Capacitance
C_{typ}	Typical capacitance
i	Current
i _c	Current at which V _{c, max} is measured
I _{leak}	Leakage current
i _{max}	Maximum surge current (also termed peak current)
I _{max}	Maximum discharge current to IEC 61643-1
I_{nom}	Nominal discharge current to IEC 61643-1
LCT	Lower category temperature
L_{typ}	Typical inductance
P_{max}	Maximum average power dissipation
R _{ins}	Insulation resistance
R_{min}	Minimum resistance
T_A	Ambient temperature
t _r	Duration of equivalent rectangular wave
UCT	Upper category temperature
V	Voltage
V_{clamp}	Clamping voltage
V _{c, max}	Maximum clamping voltage at specified current i _c
V_{DC}	DC operating voltage
V_{jump}	Maximum jump start voltage
V_{max}	Maximum voltage
V_{op}	Operating voltage
V_{RMS}	AC operating voltage, root-mean-square value
$V_{RMS,\;op,\;max}$	Root-mean-square value of max. DC operating voltage incl. ripple current
V_{surge}	Super imposed surge voltage
V_{v}	Varistor voltage
ΔV_{V}	Tolerance of varistor voltage
W_{LD}	Maximum load dump
W_{max}	Maximum energy absorption
<i>e</i>	Lead spacing

All dimensions are given in mm.

The commas used in numerical values denote decimal points.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FormFit, MiniBlue, MiniCell, MKK, MKD, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.