

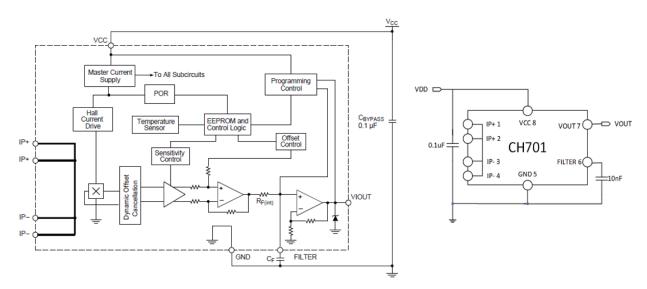
CH701

3000V_{RMS} Isolation, Hall Current Sensor IC in SOIC-8 Package

Features

- Reinforced isolation: 3000 V_{RMS}
 Total output error: ±1.5% typical
 Primary conductor resistance: 1.2 mΩ
- Single supply: 3.3V or 5V
- Output voltage proportional to AC or DC current: ±10A, ±20A, ±30A, ±40A, ±50A
- -3dB bandwidth: 120 kHz
- Response time: 4 µs
- · Ratio-metric output from supply voltage
- Adjustable bandwidth and resolution with a filter pin
- Small-footprint SOIC-8 package suitable for replacing bulky transformers or shunt current sensing solutions
- Integrated shield virtually eliminates capacitive coupling from current conductor to die, greatly suppressing output noise due to high dv/dt transients
- Factory-trimmed sensitivity and quiescent output voltage for improved accuracy
- Chopper stabilization results in extremely stable quiescent output voltage

Package



SO-8

Application

- Variable-frequency inverters
- Motor control
- Over-current fault protection
- Load detection and management

Functional Block Diagram

Description

The CH701 current sensor IC is an economical and precise solution for AC or DC current sensing in industrial, automotive, commercial, and communications systems. The small package is ideal for space-constrained applications while also saving costs due to reduced board area. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection.

The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional

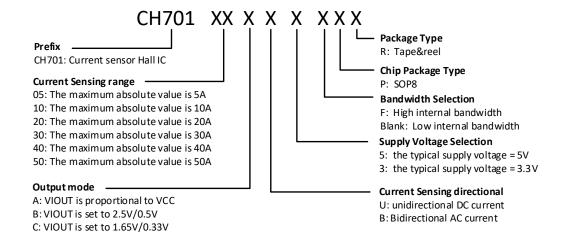
voltage. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BCD Hall IC, which is programmed for accuracy after packaging. The output of the device has a positive slope when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sensing. The internal resistance of this conductive path is $0.8~\text{m}\Omega$ typical, providing low power loss.

The terminals of the conductive path are electrically isolated from the sensor leads (pins 5 through 8). This allows the CH701 current sensor IC to be used in high-side current sense applications without the use of high-side differential amplifiers or other costly isolation techniques.

The CH701 is provided in a small, low-profile surface-mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free, except for flip-chip high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.

Revision History

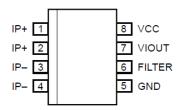
Date	Revision	Change
Nov 2019	1.0	First draft
May 2021	1.1	Updated format
Jul 2021	1.2	Added "Similar Products" section
Jul 2021	1.3	Corrected AU serials zero voltage. Corrected Elin formula.
Aug 2021	1.4	Updated "Similar Products" section
Nov 2021	1.5	Updated product naming convention, add "F" for high-bandwidth version.
Dec 2021	1.6	Updated top-side-marking factory tracking code from 6 characters to 5 characters
Feb 2022	1.7	Updated CH70105**** order information
Mar 2022	1.8	Removed CH70105AU5*/AU3*/BU5*/BB5*/CU3*/CB3*, CH7010AB3*/CU3*
May 2022	1.9	Corrected CH70110BU5*/ AU3* Sensitivity. Removed CH701**CU5/CB5
Sep 2022	2.0	Updated "Option Code" selection and "Electrical Characteristics" section
Nov 2022	2.1	Updated "Option Code" selection and "Electrical Characteristics" section


Table of Contents

1	PRODUCT FAMILY MEMBERS	4
2	OPTION CODE	4
3	PIN DEFINITIONS AND DESCRIPTIONS	5
4	ABSOLUTE MAXIMUM RATINGS	5
5	ESD PROTECTIONS	6
6	ELECTRICAL CHARACTERISTICS	7
7	APPLICATION INFORMATION	25
8	PACKAGE INFORMATION	28
9	DISCLAIMER	29

1 Product Family Members

CH701 is available in a variety of versions. They are distinguished by a specific nomenclature code:



2 Option Code

Part Number	VCC (V)	I _{PR} (A)	Sens (mV/A)	T _j (°C)	Packing
CH70105AB5*	5±0.5	±5	400		
CH70110AU3*	3.3±0.3	10	264		
Ch70110CB3F*	3.3±0.3	±10	132		
CH70120AB5*	5±0.5	±20	100		
CH70120AB5F*	5±0.5	±20	100		
CH70120CB3*	3.3±0.3	±20	66		
CH70125AB5*	5±0.5	±25	80		
CH70130AB5*	5±0.5	±30	66		Tape and
CH70130AB3*	3.3±0.3	±30	44	-40 to	Reel, 3000
CH70130AB5F*	5±0.5	±30	66	150	pieces per
CH70130CB3*	3.3±0.3	±30	44		reel
CH70140AB3*	3.3±0.3	±40	33		
CH70150AB5*	5±0.5	±50	40		
CH70150AB5F*	5±0.5	±50	40		
CH70150AB3*	3.3±0.3	±50	26		
CH70150AU5*	5±0.5	50	80		
CH70150CB3*	3.3±0.3	±50	26		
CH70160AB5*	5±0.5	±60	33		

3 Pin Definitions and Descriptions

Package LC, 8-Pin SOICN Pin-Out Diagram

Number	Name	Function
1,2	IP+	Terminals for current being sensed, fused internally
3,4	IP-	Terminals for current being sensed, fused internally
5	GND	Signal ground terminal
6	FILTER	Terminal for external capacitor that sets bandwidth
7	VIOUT	Analog output signal
8	VCC	Device power supply terminal

4 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage	V _{CC}	-	6	V
Reverse Supply Voltage	V _{RCC}	-0.1	-	V
Output Voltage	V _{IOUT}	-	V _{CC} +0.5	V
Reverse Output Voltage	V _{RIOUT}	-0.1	-	V
Operating Ambient Temperature	T _A	-40	150	°C
Storage Temperature	Ts	-65	165	°C
Junction temperature	T _{J(max)}		165	°C

Note 1: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum- rated conditions for extended periods may affect device reliability.

Isolation Characteristics

Characteristic	Symbol	Notes	Rating	Unit
Dielectric Strength Test Voltage	Viso	Agency type-tested for 60 seconds per UL 62368-1 (edition 3); production-tested at V_ISO for 1 second, in accordance with UL 62368-1 (edition 3). UL62368-1 (edition 3) replaces UL60950-1.	3000	VRMS
Working Voltage	Vivore	Maximum approved working voltage for basic (single)	725	V _{pk} or VDC
for Basic Isolation	Vwvbi	isolation according to UL 62368-1 (edition 3). UL62368-1 (edition 3) replaces UL60950-1.	513	Vrms

Thermal Characteristics

Characteristic	Symbol	Test Conditions*	Value	Units
Package Thermal Resistance (Junction to Ambient)	Reja		23	°C/W
Package Thermal Resistance (Junction to Lead)	Rejl		5	°C/W

ESD Protections

Parameter	Value	Unit
All pins 1)	±8000	V
All pins 2)	±400	V
All pins 3)	±1500	V

- 1) HBM (human body mode, 100pF, 1.5 kΩ) according to MIL-STD-883H Method 3015.8 2) MM (Machine Mode C=200pF, R=0Ω) according to JEDEC EIA/JESD22-A115 3) CDM (charged device mode) according to JEDEC EIA/JESD22-C101F

6 Electrical Characteristics

Valid through the full range of T_A , $V_{CC} = 5 V$, $C_F = 0$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply Current	Icc	V _{CC} = 5 V, output open	_	10	14	mA
Output Capacitance Load	C _L	VIOUT to GND	_	_	10	nF
Output Resistive Load	R _L	VIOUT to GND	4.7	_	_	kΩ
Primary Conductor Resistance	R _{IP}	T _A = 25°C	_	1.2	_	mΩ
Internal Filter Resistance ²	RF(int)		-	1.7	_	kΩ
Rise Time	t _r	$I_P = I_P(max), T_A = 25^{\circ}C, C_L = 1 \text{ nF}$	-	3	_	μs
Propagation Delay	tpd	$I_P = I_P(max), T_A = 25^{\circ}C, C_L = 1 \text{ nF}$	-	2	_	μs
Response Time	tresponse	$I_P = I_P(max), T_A = 25^{\circ}C, C_L = 1 \text{ nF}$	-	4	_	μs
Bandwidth	BW	Small signal –3 dB; C _L = 1 nF	-	120	_	kHz
Noise Density	Ind	Input-referenced noise density; T _A = 25°C, C _L = 1 nF	_	150	-	µA _(rms) / √Hz
Noise	In	Input-referenced noise: $C_F = 4.7$ nF, $C_L = 1$ nF, BW = 18 kHz, $T_A = 25^{\circ}C$	-	25	-	mA _(rms)
Nonlinearity	ELIN	Through full range of I _P		±1		%
Sensitivity Ratiometry Coefficient	SENS_RAT_ COEF	V _{CC} = 4.5 to 5.5 V, T _A = 25°C	_	1.3	-	-
Zero-Current Output Ratiometry Coefficient	QVO_RAT_ COEF	$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}, T_A = 25^{\circ}\text{C}$	_	1	_	_
Caturation Valtage ³	Vон	$R_L = 4.7 \text{ k}\Omega, \text{ TA} = 25^{\circ}\text{C}$	VCC - 0.2		_	V
Saturation Voltage ³	Vol	R_L = 4.7 kΩ, TA = 25°C	-		0.2	V
Power-On Time	tPO	Output reaches 90% of steady- state level, T_A = 25°C, I_P = I_{PR} (max) applied	-	62	-	μs
Shorted Output-to-Ground Current	ISC(GND)	T _A = 25°C	-	3.3	_	mA
Shorted Output-to-V _{CC} Current	Isc(vcc)	T _A = 25°C	_	45	_	mA
		<u> </u>	<u> </u>			

¹Device may be operated at higher primary current levels, I_P, ambient temperatures, T_A, and internal leadframe temperatures, provided the Maximum Junction Temperature, T_J(max), is not exceeded.

 $^{^2}R_{\text{F(int)}}$ forms an RC circuit via the FILTER pin.

 $^{^3}$ The sensor IC will continue to respond to current beyond the range of I_P until the high or low saturation voltage; however, the nonlinearity in this region will be worse than through the rest of the measurement range.

CH70105AB5* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance	ı							
Supply Voltage	V _{CC}		4.5	_	5.5	V		
Current-Sensing Range	I PR		-5	-	5	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 5V	_	400	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 5V	_	V _{CC} × 0.5	ı	٧		
Accuracy Performance	е							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%		
Total Output Error Co		E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)		•				
Sensitivity Error	E _{sens}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characteristics								
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values

² Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70110AU3* Performance Characteristics: T_A Range L, valid at T_j = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit	
Nominal Performance							
Supply Voltage	V _{CC}		3	_	3.6	V	
Current-Sensing Range	I _{PR}		0	ı	10	А	
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 5V	_	264	-	mV/A	
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 5V	_	0.33	_	V	
Accuracy Performance	•						
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%	
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)					
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%	
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV	
Lifetime Drift Characteristics							
Sensitivity Error Lifetime Drift	E sens_drift			±1		%	
Total Output Error Lifetime Drift	E tot_drift			±1		%	

Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70110CB3F* Performance Characteristics: T_A Range L, valid at $T_j = -40^{\circ}$ C to 150°C, unless otherwise specified

Test Conditions Characteristic Symbol Typ.¹ Max. Unit **Nominal Performance** $\rm v_{\rm cc}$ ٧ Supply Voltage 3 3.6 Current-Sensing I PR -10 10 Α Range $I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 5V Sensitivity Sens 132 mV/A Zero-Current Output $V_{\mathsf{IOUT}(\mathsf{Q})}$ Bidirectional, I_P = 0 A, VCC = 5V 0.33 Voltage **Accuracy Performance** E_{TOT} $I_P = I_{PR(max)}, \ T_j = -40^{\circ}C \ to \ 150^{\circ}C$ Total Output Error² -2 ±0.8 2 % Total Output Error Components³ E_{TOT} = E_{SENS} + 100 × V_{OE}/(Sens × I_P) E_{sens} Sensitivity Error $I_P = I_{PR(max)}$, $T_j = -40$ °C to 150°C -1.5 ±0.6 1.5 % V_{OE} Offset Voltage $I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$ -10 ±5 10 **Lifetime Drift Characteristics** Sensitivity Error E_{sens_drift_} ±1 % Lifetime Drift **Total Output Error** ±1 % Lifetime Drift

¹ Typical values with +/- are 3 sigma values

² Percentage of IP, with IP = IPR(max).

³ A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70120AB5* Performance Characteristics: TA Range L, valid at T_j = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit	
Nominal Performance							
Supply Voltage	V _{CC}		4.5	_	5.5	V	
Current-Sensing Range	I _{PR}		-20	ı	20	А	
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 5V	_	100	-	mV/A	
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 5V	_	V _{CC} × 0.5	_	V	
Accuracy Performance	•						
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%	
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)					
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%	
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV	
Lifetime Drift Characteristics							
Sensitivity Error Lifetime Drift	E sens_drift			±1		%	
Total Output Error Lifetime Drift	E tot_drift			±1		%	

Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70120CB3* Performance Characteristics: TA Range L, valid at T_j = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit			
Nominal Performance									
Supply Voltage	V _{CC}		3	_	3.6	V			
Current-Sensing Range	I _{PR}		-20	-	20	Α			
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$	_	66	-	mV/A			
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A	-	1.65	_	V			
Accuracy Performance	Accuracy Performance								
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%			
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)							
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%			
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV			
Lifetime Drift Characte				•					
Sensitivity Error Lifetime Drift	E sens_drift			±1		%			
Total Output Error Lifetime Drift	E tot_drift			±1		%			

Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70125AB5* Performance Characteristics: TA Range L, valid at T_j = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit			
Nominal Performance									
Supply Voltage	V _{CC}		4.5	_	5.5	V			
Current-Sensing Range	I _{PR}		-25	ı	25	Α			
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$	_	80	-	mV/A			
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A	_	2.5	_	V			
Accuracy Performance	Accuracy Performance								
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%			
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)							
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%			
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV			
Lifetime Drift Characte									
Sensitivity Error Lifetime Drift	E sens_drift			±1		%			
Total Output Error Lifetime Drift	E tot_drift			±1		%			

Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70130AB5* Performance Characteristics: TA Range L, valid at T_j = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		4.5	_	5.5	V		
Current-Sensing Range	I _{PR}		-30	-	30	Α		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 5V	_	66	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 5V	-	V _{CC} × 0.5	_	V		
Accuracy Performance	•							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%		
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±6	10	mV		
Lifetime Drift Characte				•				
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70130AB3* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		3	_	3.6	V		
Current-Sensing Range	I _{PR}		-30	ı	30	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$	_	44	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A	_	1.65	ı	V		
Accuracy Performance	•							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-2	±0.8	2	%		
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characte								
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70130CB3* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		3	_	3.6	V		
Current-Sensing Range	I _{PR}		-30	ı	30	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$	_	44	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A	_	1.65	ı	V		
Accuracy Performance	•							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-2	±0.8	2	%		
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characte								
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70130CB3* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		3	_	3.6	V		
Current-Sensing Range	I _{PR}		-30	ı	30	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$	_	44	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A	_	1.65	ı	V		
Accuracy Performance	•							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-2	±0.8	2	%		
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characte	Lifetime Drift Characteristics							
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70130CB3* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		3	_	3.6	V		
Current-Sensing Range	I _{PR}		-30	ı	30	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$	_	44	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A	_	1.65	ı	V		
Accuracy Performance	Accuracy Performance							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-2	±0.8	2	%		
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	E	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characte	Lifetime Drift Characteristics							
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70140AB3* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		3	_	3.6	V		
Current-Sensing Range	I _{PR}		-30	ı	30	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$	_	33	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A	_	1.65	ı	V		
Accuracy Performance	•							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%		
Total Output Error Cor	nponents ³ I	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characte	Lifetime Drift Characteristics							
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70150AB5* Performance Characteristics: TA Range L, valid at T_j = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		4.5	-	5.5	٧		
Current-Sensing Range	I _{PR}		-50	ı	50	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 5V	_	40	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 5V	_	V _{CC} × 0.5	_	V		
Accuracy Performance	•							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%		
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	E	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	I _P = 0 A, T _j = -40°C to 150°C	-10	±5	10	mV		
Lifetime Drift Characte	eristics							
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70150AB3* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		3	_	3.6	V		
Current-Sensing Range	I _{PR}		-50	ı	50	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 3.3V	_	26	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 3.3V	_	V _{CC} × 0.5	_	V		
Accuracy Performance	Accuracy Performance							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%		
Total Output Error Con	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	E	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characte	Lifetime Drift Characteristics							
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70150AU5* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit		
Nominal Performance								
Supply Voltage	V _{CC}		4.5	_	5.5	V		
Current-Sensing Range	I _{PR}		0	ı	50	А		
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 3.3V	_	80	-	mV/A		
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 3.3V	_	0.5	ı	V		
Accuracy Performance	•							
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%		
Total Output Error Con	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)						
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%		
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV		
Lifetime Drift Characte								
Sensitivity Error Lifetime Drift	E sens_drift			±1		%		
Total Output Error Lifetime Drift	E tot_drift			±1		%		

¹ Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70150CB3* Performance Characteristics: TA Range L, valid at T_j = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit			
Nominal Performance									
Supply Voltage	V _{CC}		3	_	3.6	V			
Current-Sensing Range	I _{PR}		-50	-	50	А			
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 3.3V	_	26	-	mV/A			
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 3.3V	-	1.65	_	V			
Accuracy Performance	Accuracy Performance								
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%			
Total Output Error Cor	nponents ³ l	E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)							
Sensitivity Error	Esens	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-1.5	±0.6	1.5	%			
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10	±5	10	mV			
Lifetime Drift Characte									
Sensitivity Error Lifetime Drift	E sens_drift			±1		%			
Total Output Error Lifetime Drift	E tot_drift			±1		%			

Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

CH70160AB5* Performance Characteristics: TA Range L, valid at Tj = -40°C to 150°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ¹	Max.	Unit
Nominal Performance						
Supply Voltage	V _{CC}		4.5	_	5.5	V
Current-Sensing Range	I _{PR}		-60	-	60	А
Sensitivity	Sens	$I_{PR(min)} < I_{P} < I_{PR(max)}$, VCC = 3.3V	_	33	-	mV/A
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional, I _P = 0 A, VCC = 3.3V	_	V _{CC} × 0.5	ı	V
Accuracy Performance						
Total Output Error ²	E _{TOT}	$I_P = I_{PR(max)}, T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	-2	±0.8	2	%
Total Output Error Co		E _{TOT} = E _{SENS} + 100 × V _{OE} /(Sens × I _P)				
Sensitivity Error	E _{sens}	$I_P = I_{PR(max)}, T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-1.5	±0.6	1.5	%
Offset Voltage	V _{OE}	$I_P = 0 \text{ A}, T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Lifetime Drift Characteristics						
Sensitivity Error Lifetime Drift	E sens_drift			±1		%
Total Output Error Lifetime Drift	E _{tot_drift}			±1		%

Typical values with +/- are 3 sigma values
2 Percentage of IP, with IP = IPR(max).
3 A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.

7 Application Information

7.1 Estimating Total Error vs. Sensed Current

The Performance Characteristics tables give distribution (± 3 sigma) values for Total Error at $I_{PR(max)}$; however, one often wants to know what error to expect at a particular current. This can be estimated by using the distribution data for the components of Total Error, Sensitivity Error, and Offset Voltage. The ± 3 sigma value for Total Error (E_{TOT}) as a function of the sensed current (I_P) is estimated as:

$$E_{TOT}(I_P) = \sqrt{E_{SENS}^2 + \left(\frac{100 \times V_{OE}}{Sens \times I_P}\right)^2}$$

Here, E_{SENS} and V_{OE} are the ±3 sigma values for those error terms. If there is an average sensitivity error or average offset voltage, then the average Total Error is estimated as: $E_{TOT_{AVG}}(I_P) = E_{SENS_{AVG}} + E_{SENS_{AVG}}(I_P)$

$$E_{TOT_{AVG}}(I_P) = E_{SENS_{AVG}} + \frac{100 \times V_{OE_{AVG}}}{Sens \times I_P}$$

The resulting total error will be a sum of E_{TOT} and E_{TOT_AVG}. Using these equations and the 3 sigma distributions for Sensitivity Error and Offset Voltage, the Total Error versus sensed current (I_P) is below for the CH70120AB. As expected, as one goes towards zero current, the error in percent goes towards infinity due to division by zero.

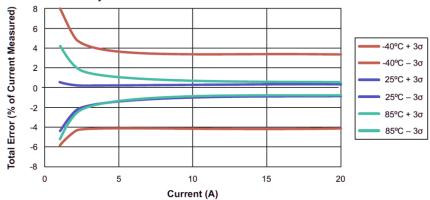


Figure 1: Predicted Total Error as a Function of the Sensed Current for the CH70120AB

7.2 Definitions of accuracy characteristics

Sensitivity (Sens). The change in sensor IC output in response to a 1 A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G/A) (1 G=0.1 mT) and the linear IC amplifier gain (MV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (MV/A) for the full-scale current of the device.

Nonlinearity (E_{LIN}). The nonlinearity is a measure of how linear the output of the sensor IC is over the full current measurement range. The nonlinearity is calculated as:

$$E_{LIN} = \left\{ 1 - \left[\frac{V_{IOUT} \left(I_{PR(max)} \right) - V_{IOUT_{(Q)}}}{2 \times \left(V_{IOUT} \left(\frac{I_{PR(max)}}{2} \right) - V_{IOUT_{(Q)}} \right)} \right] \right\} \times 100(\%)$$

where $V_{\text{IOUT}}(I_{\text{PR(max)}})$ is the output of the sensor IC with the maximum measurement current flowing through it and $V_{\text{IOUT}}(I_{\text{PR(max)}}/2)$ is the output of the sensor IC with half of the maximum measurement current flowing through it.

Zero-Current Output Voltage (V_{IOUT(Q)}). The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at $0.5 \times V_{CC}$ for a bidirectional device and $0.1 \times V_{CC}$ for a unidirectional device. For example, in the case of a bidirectional output device, $V_{CC} = 5 \text{ V}$ translates into $V_{IOUT(Q)} = 2.5 \text{ V}$. Variation in $V_{IOUT(Q)}$ can be attributed to the resolution of the linear IC quiescent voltage trim and thermal drift.

Offset Voltage (V_{OE}). The deviation of the device output from its ideal quiescent value of $0.5 \times V_{CC}$ (bidirectional) or $0.1 \times V_{CC}$ (unidirectional) due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.

Total Output Error (E_{TOT}). The difference between the current measurement from the sensor IC and the actual current (I_P), relative to the actual current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path:

$$E_{TOT}(I_P) = \frac{V_{IOUT_{ideal}}(I_P) - V_{IOUT}(I_P)}{Sens_{ideal}(I_P) \times I_P} \times 100(\%)$$

The Total Output Error incorporates all sources of error and is a function of I_P . At relatively high currents, E_{TOT} will be mostly due to sensitivity error, and at relatively low currents, E_{TOT} will be mostly due to Offset Voltage (V_{OE}). In fact, at $I_P = 0$, E_{TOT} approaches infinity due to the offset. This is illustrated in Figures 2 and 3. Figure 2 shows a distribution of output voltages versus I_P at 25°C and across temperature. Figure 3 shows the corresponding E_{TOT} versus I_P .

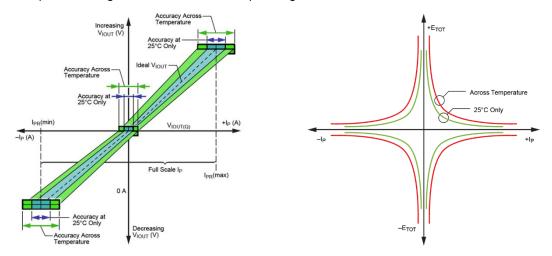


Figure 2: Output Voltage versus Sensed Current

Figure3: Total Output Error versus Sensed Current

Sensitivity Ratiometry Coefficient (SENS_RAT_COEF). The coefficient defines how the sensitivity scales with V_{CC} . The ideal coefficient is 1, meaning the sensitivity scales proportionally with V_{CC} . A 10% increase in V_{CC} results in a 10% increase in sensitivity. A coefficient of 1.1 means that the sensitivity increases by 10% more than the ideal proportionality case. This means that a 10% increase in V_{CC} results in an 11% increase in sensitivity. This relationship is described by the following equation:

$$Sens(V_{CC}) = Sens(5V) \left[1 + \frac{(V_{CC} - 5V) \times SENS_RAT_COEF}{5V} \right]$$

This can be rearranged to define the sensitivity ratiometry coefficient as:

$$SENS_{RAT_{COEF}} = \left[\frac{Sens(V_{CC})}{Sens(5V)} - 1 \right] \times \frac{5V}{V_{CC} - 5V}$$

Zero-Current Output Ratiometry Coefficient (QVO_RAT_ COEF). The coefficient defines how the zero-current output voltage scales with $V_{\rm CC}$. The ideal coefficient is 1, meaning the output voltage scales proportionally with $V_{\rm CC}$, always being equal to $V_{\rm CC}/2$. A coefficient of 1.1 means that the zero-current output voltage increases by 10% more than the ideal proportionality case. This means that a 10% increase in $V_{\rm CC}$ results in an 11% increase in the zero-current output voltage. This relationship is described by the following equation:

$$VIOUTQ(V_{CC}) = VIOUTQ(5V) \left[1 + \frac{(V_{CC} - 5V) \times QVO_RAT_COEF}{5V} \right]$$

This can be rearranged to define the zero-current output ratiometry coefficient as:

$$QVO_RAT_COEF = \left[\frac{\text{VIOUTQ}(V_{CC})}{\text{VIOUTQ}(5V)} - 1\right] \times \frac{5V}{V_{CC} - 5V}$$

7.3 Definitions of dynamic response characteristics

Power-On Time (tPO). When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field. Power-On Time, t_{PO} , is defined as the time it takes for the output voltage to settle within $\pm 10\%$ of its steady-state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage, $V_{CC(min)}$, as shown in the chart at right.

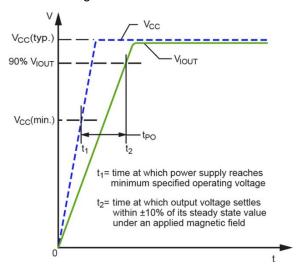
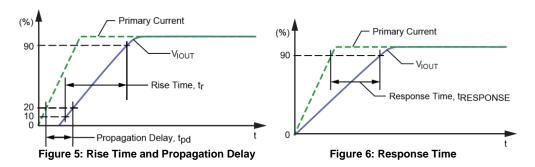



Figure 4: Power-On Time

Rise Time (t_r). The time interval between a) when the sensor IC reaches 10% of its full-scale value, and b) when it reaches 90% of its full-scale value. The rise time to a step response is used to derive the bandwidth of the current sensor IC, in which $f(-3 \text{ dB}) = 0.35 / t_r$. Both t_r and $t_{RESPONSE}$ are detrimentally affected by eddy-current losses observed in the conductive IC ground plane.

Propagation Delay (t_{pd}). The propagation delay is measured as the time interval a) when the primary current signal reaches 20% of its final value, and b) when the device reaches 20% of its output corresponding to the applied current.

Response Time (t_{RESPONSE}**).** The time interval between a) when the primary current signal reaches 90% of its final value, and b) when the device reaches 90% of its output corresponding to the applied current.

8 Package Information

For Reference Only – Not for Tooling Use

(Reference MS-012AA)

Dimensions in millimeters - NOT TO SCALE

Dimensions exclusive of mold flash, gate burrs, and dambar protrusions

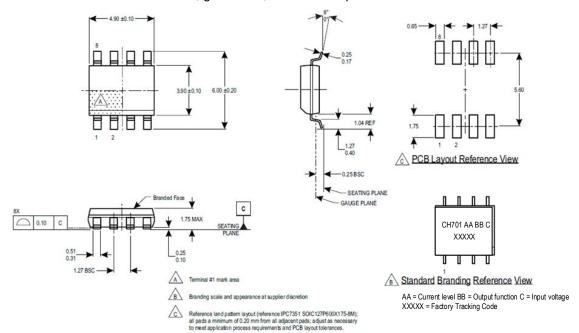


Figure 7: Package LC, 8-pin SOIC

9 Disclaimer

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Information furnished is believed to be accurate and reliable. However, Cosemitech assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cosemitech. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Cosemitech products are not authorized for use as critical components in life support devices or systems without express written approval of Cosemitech.

The Cosemitech logo is a registered trademark of Cosemitech.

For the latest version of this document, go to our website at www.cosemitech.com