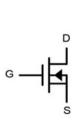
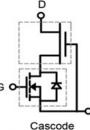


650V GaN Power Transistor (FET) V_{GS} 8V@80m Ω ,25°C

Features

- 1. Easy to use, compatible with standard gate drivers
- 2.Excellent Q_G x R_{DS(on)} figure of merit (FOM)
- 3.Low Q_{RR} , no free-wheeling diode required
- 4.Low switching loss
- 5.RoHS compliant and Halogen-free


Product summary				
V _{DSS}	650	V		
R _{DS(ON),typ}	80	mΩ		
Q _{G,typ}	21	nC		
Q _{RR,typ}	26	nC		


Applications

- 1. High efficiency power supplies
- 2.Telecom and datacom
- 3.Automotive
- 4.Servo motors

3 Lead TO-220

Schematic Symbol

Device Structure

S

Packaging

Part Number	Package	Packaging	Base QTY
CRNT080C65	3 Lead TO-220	Tube	50

Maximum ratings, at $T_{C=}25\ ^{\circ}C$, unless otherwise specified

Symbol	Parameter	Limit Value	Unit	
	Continuous drain current @T _c =25°C		30	Α
Ι _D	Continuous drain current @T _C =100°C		19	A
	Pulsed drain current @T _c =25°C (pulse wic	lth: 10us)	125	A
I _{DM}	Pulsed drain current @T _C =150°C (pulse w	idth: 10us)	90	A
V _{DSS}	Drain to source voltage (T _J = -55°C to 150°	650	V	
V _{TDSS}	Transient drain to source voltage ^a	800	V	
V _{GSS}	Gate to source voltage	±20	V	
PD	Maximum power dissipation @TC=25°C	125	W	
T _C		Case	-55 to 150	°C
Tj	Operating temperature	Junction	-55 to 150	°C
Ts	Storage temperature	-55 to 150	°C	
T _{CSOLD}	Soldering peak temperature	260	°C	

650V GaN Power Transistor (FET) $V_{GS}8V@80m\Omega,25^{\circ}C$

Thermal Resistance

Symbol	Parameter	Typical	Unit
R _{OJC}	Junction-to-case	1	°C/W
R _{OJA}	Junction-to-ambient ^b	50	°C/W

Notes:

a. Off-state spike duty cycle < 0.01, spike duration < 2us

b. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with $6cm^2$ copper area and $70\mu m$ thickness)

650V GaN Power Transistor (FET) $V_{GS}8V@80m\Omega,25^{\circ}C$

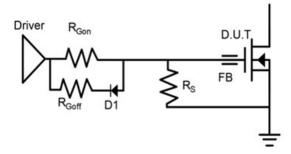
Symbol	Min	Тур	Max	Unit	Test Conditions
Forward Chara	acteristics	- <u></u>			
V _{DSS-MAX}	650	-	-	V	V _{GS} =0V
B _{VDSS}	-	1000	-	V	V _{GS} =0V, I _{DSS} =250μA
$V_{GS(th)}$	3	4	5	V	$V_{DS}=V_{GS}$, $I_D=500\mu A$
D C	-	80	100	mΩ	V _{GS} =8V, I _D =4A, T _J =25°C
R _{DS(on)} ^c	-	160	-	mΩ	V _{GS} =8V, I _D =4A, T _J =150°C
1	-	10	30	μA	V _{DS} =700V, V _{GS} =0V, T _J =25°C
I _{DSS}	-	50	-	μΑ	V _{DS} =700V, V _{GS} =0V, T _J =150°C
	-	-	150	nA	V _{GS} =20V
I _{GSS}	-	-	-150	nA	V _{GS=} -20V
C _{ISS}	-	650	-	pF	
C _{OSS}	-	60	-	pF	V _{GS} =0V, V _{DS} =400V, f=1MHz
C _{RSS}	-	1.5	-	pF	
C _{O(er)}	-	90	-	pF	
C _{O(tr)}	-	180	-	pF	V _{GS} =0V, V _{DS} =0 - 400V
Q _G	-	21	-	nC	
Q_{GS}	-	6.7	-	nC	V _{DS} =400V, V _{GS} =0 - 12V, I _D =5.5A
Q_{GD}	-	9	-	nC	
t _{D(on)}	-	44	-	ns	
t _R	-	16	-	ns	
$t_{D(off)}$	-	40	-	ns	V_{DS} =400V, V_{GS} =0 - 12V, I_{D} =3A, R_{G} =30 Ω
t _F	-	12	-	ns	

Electrical Parameters, at T_J=25 °C, unless otherwise specified

Reverse Characteristics

	-	1.3	-	V	V _{GS} =0V, I _S =2A, T _J =25°C
V	-	1.9	-	V	V _{GS} =0V, I _S =5A, T _J =25°C
V _{SD}	-	3	-	V	V _{GS} =0V, I _S =5A, T _J =150°C
t _{RR}	-	16	-	ns	I _S =3A, V _{GS} =0V, di/dt=1000A/us, V _{DD} =400V
Q _{RR}	-	26	-	nC	$V_{S} = SA, V_{GS} = 0V, u)/u(= 1000A/US, V_{DD} = 400V$

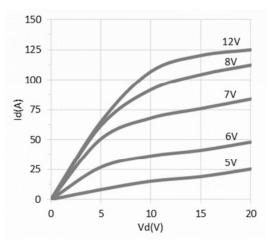
Notes:

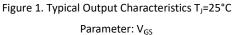

c. Dynamic on-resistance; see Figure 17 and 18 for test circuit and configurations

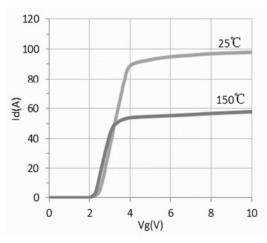
650V GaN Power Transistor (FET) $V_{GS}8V@80m\Omega,25^{\circ}C$

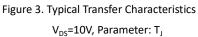
Circuit Implementation

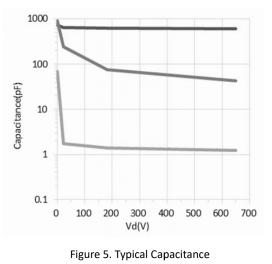
Recommended Single Ended Drive Circuit


Recommended gate drive: (0) V, 12 V) with R_{Gon} = 3	300 - 500 Ω, R _{Goff} =10 Ω


Cata Farrita Daad	Gate	Gate	Gate Source	Gate
Gate Ferrite Bead	Resistance	Resistance	Resistance	Diode
(FB)	(R _{Gon})	(R _{Goff})	(R _s)	(D1)
300 - 600 Ω@100 MHz	300 - 500 Ω	10 Ω	10 kΩ	1N4148






Typical Characteristics, at T_c =25 °C, unless otherwise specified

V_{GS}=0V, f=1MHZ

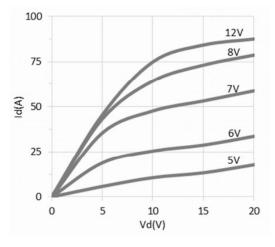


Figure 2. Typical Output Characteristics $T_J {=} 150^\circ C$ Parameter: V_{GS}

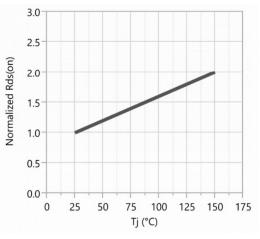


Figure 4. Normalized On-resistance I_D =4A, V_{GS} =8V

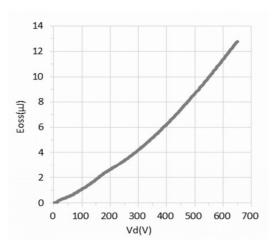


Figure 6. Typical Coss Stored Energy

CRNT080C65

650V GaN Power Transistor (FET) V_{GS}8V@80mΩ,25°C

Typical Characteristics, at T_c =25 °C, unless otherwise specified

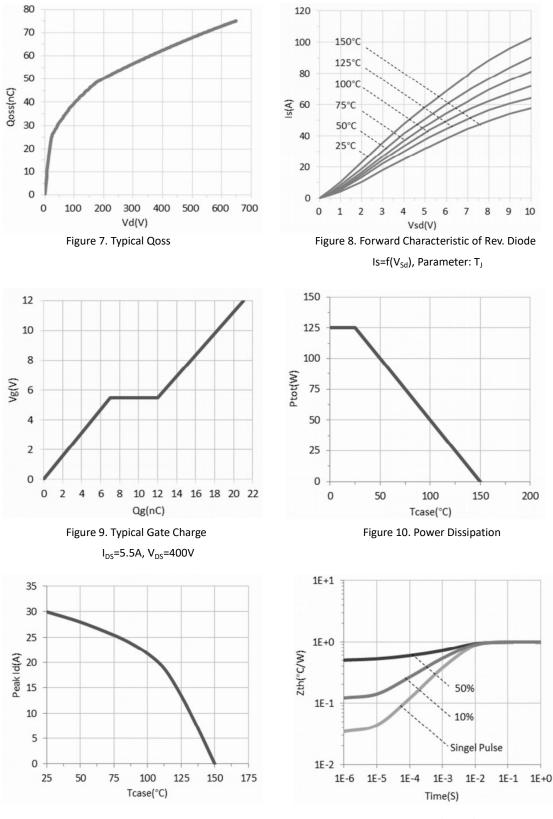
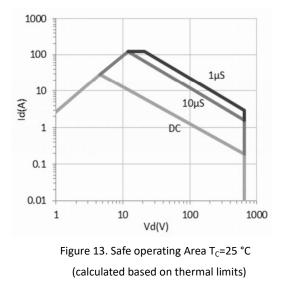
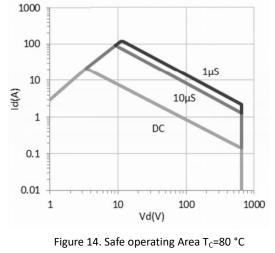


Figure 11. Current Derating

Figure 12. Transient Thermal Resistance





CRNT080C65

650V GaN Power Transistor (FET) $V_{GS}8V@80m\Omega,25^{\circ}C$

Typical Characteristics, at $T_c=25$ °C, unless otherwise specified

(calculated based on thermal limits)

650V GaN Power Transistor (FET) V_{GS}8V@80mΩ,25°C

Test Circuits and Waveforms

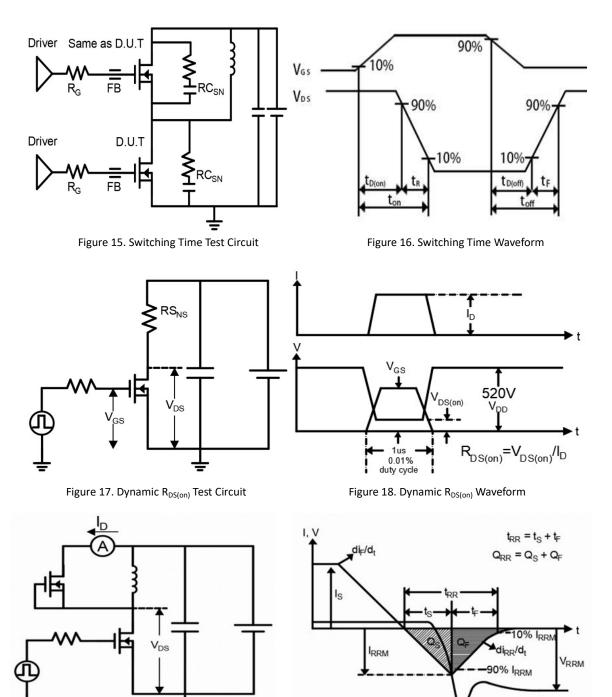


Figure 19. Diode Characteristic Test Circuit

Figure 20. Diode Recovery Waveform

Design Considerations

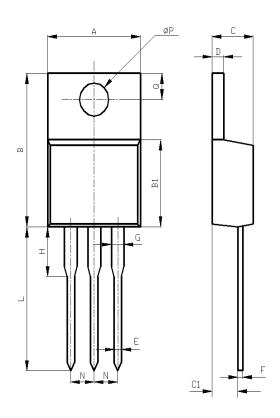
Fast switching GaN device can reduce power conversion losses, and thus enable high frequency operations.

Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.

Before evaluating GaN devices, please refer to the table below which provides some practical rules that should be followed during the evaluation.

When Evaluating GaN Devices:

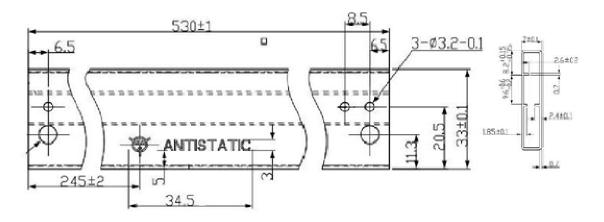
DO	DO NOT
Make sure the traces are as short as possible	Using the company's devices in GDS board
for both drive and power loops to minimize	layouts
parasitic inductance	
Use the test tool with the shortest inductive	Use differential mode probe or probe ground
loop, and make sure test points should be	clip with long wires
placed close enough	
Minimize the lead length of TO packages when	Use long traces in drive circuit, or long lead
installing them to PCB	length of the devices


CRNT080C65

650V GaN Power Transistor (FET) $V_{GS}8V@80m\Omega,25^{\circ}C$

Package Outline

3 Lead TO-220 Package


Pin 1: Gate; Pin 2: Source; Pin 3: Drain; Tab: Source

	ltowe	Values	s(mm)
	Items	MIN	MAX
	А	9.60	10.6
	В	15.0	16.0
	B1	8.90	9.50
	С	4.30	4.80
	C1	2.30	3.10
	D	1.20	1.40
	E	0.70	0.90
	F	0.30	0.60
	G	1.17	1.37
	Н	2.70	3.80
	L	12.6	14.8
	Ν	2.34	2.74
出口。	Q	2.40	3.00
单位: mm	ФР	3.50	3.90

Tube Information

Dimensions are shown in millimeters

650V GaN Power Transistor (FET) V_{GS}8V@80mΩ,25°C

Revision History

Version	Date	Change(s)
1.0	05/30/2023	Release formal datasheet

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qualified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semiconductor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

